The iSBC 660 System Chassis is an attractive, 7-inch high system chassis designed for use with Intel OEM computers. It has eight slots for single board computers, memory, I/O, or other expansion modules. The iSBC 660 is ideal for applications requiring multiple board solutions. DC power output is provided at +12V, +5V, -12V, and -5V levels. The current capabilities of each of these output levels have been chosen to provide power over a 0°C to 50°C temperature range for the majority of applications requiring combinations of computers, memories, peripherals, and other I/O capabilities. Current limiting and over-voltage protection is provided at all outputs. Standard logic recognizes a system AC power failure and generates a TTL signal for use in power-down control. For user convenience, a reset switch is provided on the front panel. The reset signal generated and sent to the system bus can be used for external system control.
SPECIFICATIONS

Electrical Characteristics

Input Power
Frequency: 50 Hz ± 5%, 60 Hz ± 5%
Voltage: 115V ± 10%, 230V ± 10%, 215 VAC ± 10%, 100 VAC ± 10% via user configured wiring options

Output Power

<table>
<thead>
<tr>
<th>Power</th>
<th>Output Current (Max)</th>
<th>Current Limit (Amps)</th>
<th>Over-Voltage Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V</td>
<td>4.5A</td>
<td>5.4</td>
<td>15V ± 1V</td>
</tr>
<tr>
<td>+5V</td>
<td>30A</td>
<td>3.6</td>
<td>6.2V ± 0.4V</td>
</tr>
<tr>
<td>-5V</td>
<td>1.75A</td>
<td>2.1</td>
<td>-6.2V ± 0.4V</td>
</tr>
<tr>
<td>-12V</td>
<td>1.75A</td>
<td>2.1</td>
<td>-15V ± 1V</td>
</tr>
</tbody>
</table>

Combined Line/Load Regulation — ±1% at ±10% static line change and ±50% static load change, measured at the output connector (±0.2% measured at the power supply under the same conditions).

Remote Sensing — Provided for +5 VDC output line regulation.

Output Ripple and Noise — 10 mV peak-to-peak maximum (DC to 500 kHz).

Output Transient Response — Less than 50 μs for ±50% load change.

Output Transient Deviation — Less than ±5% of initial voltage for ±50% load change.

Power Failure Indication (AC Low) — A TTL open collector high signal is provided when the input voltage drops below 90% of its nominal value. DC voltages will remain within 5% of their nominal values for 3.0 milliseconds (minimum) after AC low goes true. The “AC Low” signal will reset to a TTL low level when the AC input voltage is restored and all output voltages are within specified regulation. The “AC Low” threshold is adjustable for optimum power-down performance at other input combinations (i.e. 100 VAC, 215 VAC, 50 Hz).

Figure 1. ISBC System Chassis Dimensions
iSBC 660

Humidity — Up to 90% relative, non-condensing

Physical Characteristics

Height — 7 in. (17.8 cm)

Width

At Front Panel: 19 in. (48.3 cm)

Behind Front Panel: 17 in. (43.2 cm)

Depth — 20 in. (50.8 cm) with all protrusions

Environmental Characteristics

Temperature

Operating: 0°C to 50°C

Non-Operating: −40°C to +85°C

Equipment Supplied

iSBC 660 System Chassis with *iSBC 640* Power Supply, *iSBC 604/614* Cardcage/Backplane, dual fans, pop-off front panel

Connector pack with RS232C cable (terminal/modem interface to single board computers), two 50-pin parallel I/O connectors for single board computers

Schematics for cardcage/backplane, chassis

Outline drawing

Reference Manuals

9800505A — *iSBC 660* Hardware Reference Manual (NOT SUPPLIED)

9800505 — *iSBC 660* System Chassis Hardware Reference Manual (NOT SUPPLIED)

9800803 — *iSBC 640* Power Supply Hardware Reference Manual (NOT SUPPLIED)

9800708 — *iSBC 604/614* Cardcage Hardware Reference Manual (NOT SUPPLIED)

Reference manuals are shipped with each product only if designated SUPPLIED (see above). Manuals may be ordered from any Intel sales representative, distributor office or from Intel Literature Department, 3065 Bowers Avenue, Santa Clara, California 95051.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBC 660</td>
<td>System Chassis</td>
</tr>
</tbody>
</table>