1960~ Processor
Assembler User’s Guide

Order Number: 485276-007

Revision
-001
-002
-003
-004
-005
-006
-007

Revision History

Original Issue.

Minor corrections.

Revised for CTOOLS960 R4.5 and GNU/960 Tools R2.4.
Revised for Release 5.0.

Revised for Release 5.1

Revised for Release 6.0

Revised for Release 6.5

Date

12/92
09/93
05/94
02/96
01/97
12/97
12/98

In the United States, additional copies of thismanual or other Intel literature may be obtained by writing:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

Or you can call the following toll-free number:
1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales
office.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, theimplied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in thisdocument. Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product.
No other circuit patent licenses areimplied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure
issubject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government,
in accordance with the software license agreement as defined in FAR 52.227-7013.

Copyright 00 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of thismanual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying,
provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to thisone.

Permission is granted to copy and distribute trand ations of this manual into another language, under the above conditions
for modified versions.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the |atest specifications before placing your order.

* Other brands and names are the property of their respective owners.

Oy
P
printed on

recycled paper Copyright 00 1992 - 1994, 1996, 1997, 1998. Intel Corporation. All rights reserved.

Contents

Chapter 1

Chapter 2

Overview

i960Y Processor Assembler and Related Tools 1-1

Compatibility and Standardscccccccveeeeiiiiiieeeeeeeeeeeens 1-2

About This Manualcceeieiiiiiiieeeeie e, 1-2
Target AUIENCE.......ccoeiiiccee e 1-3
(0701 01Y/=1 o1 1o] o 1= 1-3

CUSIOMEE SEIVICE ..covvneeiiii ettt 1-5

Writing Assembly Language Code for the i960® Rx

Processor

INErOAUCTION ..o 2-1
What is the RX Strategy?......ccceeeeevviiiiiiiiiiiie e, 2-1
How Do | Use the RX Strategy?.......cccceevveeeeiieviiiiieeeeennn, 2-1
How Do | Use the Jx-Specific Strategy?.........ccceeeeeeee... 2-2
How Do | Decide Which Strategy to Use? 2-2
Writing Assembly Code With the Rx Strategy................ 2-3
Writing Assembly Code Without the Rx Strategy........... 2-3

Details of the RX Strategycccuviiiiiiieeiiiiiiiiiiee e 2-4
80960 Instruction Set SUPPOIt.......cccceeevieeeeeeriieeeeiiiiiann, 2-4
Big-Endian SUPPOIt........cceeiiieiiiiiiiicee e 2-7
b.out OMF SUPPOIt.......cooiiiiiiieie e 2-7

80960 Assembly Language Converter (xlate960) 2-7

Improved Assembler Pseudo-Instruction Support.............. 2-8
INErOAUCTION .o, 2-8

i960® Processor Assembler User's Guide

Chapter 3

Chapter 4

Invoking the Assembler
INnvocation COMMANceviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 3-1
Specifying Option Argumentscceeeeeieeeeeeeeeevninnnn. 3-2
Specifying Single and Multiple Options..............c...vvuee.. 3-2
Using Uppercase and LOWErcase............cccoevvvvvvvvvvnnnnnn. 3-3
Naming the Object File........cccoooiiiiiiiiiiiiii e, 3-4
Providing Source INpUtc.ocoeeiiiiiiiiiiiii e 3-5
Environment Variables.............cccccoiviiiiiiiiiiiiiiiiiiiiiiiis 3-6
Selecting the Instruction Set and Libraries 3-7
Defining a Base Directory Path..............cccoooooeiiiiiiinnnnnn. 3-7
Defining an Identification String..........ccccoeeevieeiiiiiiiiinnnnn. 3-8
Redirecting Error and Warning Message Output........... 3-8
Building a Search Path for Include Files........................ 3-8
Building the Search Path for the Assembler
Executable ... 3-9
Option Reference
Az ArChItECIUN .o 4-3
D: Define symbol............cooooiiiii 4-4
d: Debug SYMDOISuciiiiiiiiice e 4-6
G: Big-endian target........cccoooeeeiiiiiiiiiiie e 4-7
I: Include-file search path...........ccccoeeeii i, 4-8
I INPUL from StAiNeeeii e 4-9
L: Generate a listing.........ccoovviiiiiiiie e, 4-10
n: No compare-and-branch replacement...............cccc......... 4-16
0: Object filename..........ocviiiiiiiiiii e, 4-17
p: Position independence............ccccceeeeiiiie e 4-18
£ TranSIate 4-19
NV, VO8O0 VBISION. ..ttt e e e eaas 4-20
W2 WaAININGS ..o e e e e eenees 4-21
X: Allow mixed architeCtures............ccccvvvviiiiiiiiiiiiiiiiiiieeeeen, 4-21
Z: TIME SLAMP ceeniieeeeieeee e e 4-23

Contents

Chapter 5

Chapter 6
Chapter 7

Directives
S L= P 5-2
Specifying the INput ..., 5-3
Controlling the Location Counter..........cccceevveeeeeeeiieeeeiinnnnn. 5-3
Setting the Location Counter to a Specific Value........... 5-3
Moving the Location Counter to a Section..................... 5-4
INItIAliZING DAL ..vvuiiieeccceecee e 5-5
Initializing Byte, Ordinal, and Integer Data 5-6
Initializing Floating-point Datacc..ccoeviviiiiiiieneennn. 5-6
Initializing String Data.............ccoovviviiiiiiieeeececee e, 5-6
Initializing Blocks of Memory..........cccceeeeiiiieeiiiiieee, 5-7
Defining SYmbolS ... 5-7
Providing Debugger Informationcccccceeeeiiiieieiinnininnn, 5-8
(@] 13 217413 o TR SRUPPPPRIN 5-9
Marking Position Independence...........cccccviceeiiiieeeeeeee, 5-10
Controlling the Listingccooviviiiiiiiiie e 5-10
Directives Reference..........ccccccccvviiiiiiiiiiiiiie 5-10
Messages
Assembly Language
Assembly Language Statement Format....................cc..... 7-1
CharacCter Set.........uuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 7-2
Tokens and Separators.............ovvveieiiiieeeeeeeeeeee e 7-3
[dentifiers ... 7-3
CONSLANTS ...eeiiiieiieeeee ettt e e e eeeees 7-3
Simple CoNStaNtScoiieiiiiiiiicee e 7-3
Representing Floating Point Numbers........................... 7-4
Character CONSLANTSuuuururueiiiiinniiriieninernnerenrn. 7-5
String CoNSANTS.....cvvviiiii e 7-6
LADRIS .. 7-6

i960® Processor Assembler User's Guide

Numeric (Local) LabelS..........cccooviiiiiiiiiiiiiiiiieeeeecceeeii, 7-7

EXPreSSIONS .. .covviiiiiiiiii e 7-7

(@ 01T = 1 (0] = 7-8
EXPression TYPES....oocci i 7-10
Type Propagation in EXpressions.........ccccceeeeeviiieeeeeennn, 7-13
COMMENLES .. 7-14
Summary of Core INStructions..........cccceeevveeeiieviiiicieee e, 7-15
Data MOVEMENT.........cooiiiiiiiiii e 7-15
LOA e 7-16
SHO e 7-16
MOV e 7-17
SelECt .oovvvviiiii 7-17
Ordinal and Integer Arithmetic...........ccccceeeiiieiiiiiiiiiinnnnn. 7-18
Basic ArithmetiC..........coooeeeeiiiii, 7-18
Extended ArithmetiC...........ccoeeeeeiiiii e 7-19
Conditional ArithmetiC...........uevvviveeiiiiiiiiiie, 7-19
Remainder and ModulO.........cccccoeeeeeieiiiiie 7-21
Shift and Rotate..........ccvvvvviiiiiii, 7-21
LOQICAL.....cciiiiieeeee e 7-22
Bit, Bit Field, BYte........cooviiiiii e, 7-24
Bit OperationsS........ccooeeevviiiiiiiiiie e 7-24
Bit Field Operationscccceeeiiieeiiieeiicee e, 7-25
Byte OperationsS...........couvviiiiiiiiiiie e 7-25
(O70] 491 L= T 110 U 7-25
Compare and Conditional Compare............cccccevvvnene 7-26
Compare and Increment or Decrement..................... 7-27
BranCho 7-27
Unconditional Branch...........ccccoooiiii, 7-28
Conditional Branch ..., 7-28
Compare and Branch...........cccccovvviiiiiiiiiieeeeeeeeeein, 7-29
Call and Returncoooeeeiii, 7-30

Vi

Contents

FauUIt ..o 7-31
=T o0 [P 7-32
Processor Managementcoevvevveiiieeeeiiineeeeeiiineeeens 7-32
Synchronous (K-series only)oeevvviviiiiiiiiieeeeeeeeens 7-34
ALOMIC .o 7-35
Summary of On-chip Numerics Instructions....................... 7-35
Data MOVEMENT.......ccoviiiiiiiii e 7-35
SIgN COPYING . .coiiieeiiiicee e e e e e e aannes 7-37
Data Type CONVEISION.....ccciieeeiiiiiiiiiiee e 7-37
Basic ArthMEtiCccvvviiiiiiiiiiiiiiiiiee 7-38
DECIMALciiiiiiiiiiiiiiiieieeeeeeeeee e 7-39
Comparison and Classificationcccccceeeeeieieeeeenen, 7-40
Trigonometric FUNCLONS............vviiiiiiiieeecceec . 7-41
Logarithmic, Exponential, and Scale 7-42
Chapter 8 Pseudo-instructions
SYNEBX ettt ennne 8-1
Branch Pseudo-inStructionscccoovveeiivviiiiiiiiinseeeeeeeeees 8-2
Migration-enabling Pseudo-instructionsccceeevveee... 8-3
Conditional Faults Pseudo-instructionsccceevvvvveeenns 8-5
Load Pseudo-inStrucCtionscooeeeevieeeiiiiiiiiineeeeeeeeeeeeees 8-5
Call Pseudo-inStruCtioNSuueiiiiiieeee e 8-5
Compare-and-jump Pseudo-instructions..............ccceeveeee... 8-5
Pseudo-instructions Reference..........cccccvvviiiiiiiieeeieeeeeinns 8-8
Chapter 9 Example Programs
Examples Using the Core Instruction Set................ccceeeen. 9-1
Enable and Count Interrupts From 8259A.................... 9-2
Send an IAC to the Processor............ccooeeeiivvvvvvivnnnnnne. 9-8
Perform a BitBIt Operationcccooeeeiieiiiiiiiiieeee e, 9-9
Perform Matrix Multiplicationccoovivviiiieeen e, 9-11
CoMPAre SIHNGS ...ovvveieei e e e e e e e e eaanns 9-13

vii

i960® Processor Assembler User's Guide

Examples Using Floating-point Instructions........................ 9-14
Optimize a Numerics Application..............ccoceevvvvviivinnnnn. 9-14
Perform Matrix Multiplicationccccoeeeeiieiiiiiiiiinnnnnn. 9-16
Assembly COde.......ccoeiiiiiiiiiiee e, 9-16
CCOE ..o 9-18
Perform Basic Numerics Operationsccccceeevvvnnnnn. 9-19
Exponentiate With an Arbitrary Exponent...................... 9-19
Convert Between Coordinate Systems.............ccccvvveenn. 9-20
Retrieve Fault Record Pointercccocevviiiiviiininnnnns 9-21
Glossary
Index
Examples
7-1 Example of Constants and Literal Values.................. 7-5
7-2 Forward-reference External Symbol in Expressions.. 7-8
7-3 Example of Register Usage...........ccceeeieieiiiiiiieeeeeen, 7-13
Figures
9-1 [AC Message StrUCIUIecovevviviiiieeeeeiie e e, 9-8
9-2 Stack For Fault Handlerccccccoeeeiiiiiiiiiiiiiis 9-21
Tables
3-1 Assembler Environment Variablesccccceeeeeenen. 3-7
4-1 Assembler OPtioNS..........cevvveviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee 4-1
4-2 COREO-3 Architecture Compatibilities....................... 4-4
5-1 Functions Performed by Directives................ccoeeee. 5-1
7-1 Assembly Language Character Set.........cccccceeeeeennn. 7-2
7-2 Prefixes for Floating-point Constants 7-4
7-3 Floating-point Literals...........ccooeeiiiiiii, 7-5
7-4 Character CoNStantscccvvvevvviiiinieeeeeeeeiiiieee e 7-6
7-5 EXPression Operatorscooevveeeeiiieeiieeeeeeeeeeeeeen 7-9
7-6 Operator PreCedencCe..........covvvvvvviiiiiiiiiiiiiiii, 7-9

viii

Contents

7-7 Predefined Register Symbols..........ccccooeeiiiiiiiiininnnn, 7-12
7-8 Unary Operation..........cccoovuuiiiiiiiieeeeeeeeiiiee e e eennens 7-23
7-9 Binary Operationsocuvviiiiiieeeeeeeeiiiiiee e e e, 7-23
7-10 Binary Operations Continuedc.ccoeeeeeeivviiieeninnnns 7-23
7-11 Supported Processor Management Instructions........ 7-33
8-1 Branch Real Pseudo-instructions............ccccccvvvvnnnnns 8-2
8-2 New Assembler Pseudo-Instructions................cc.e..e. 8-4
8-3 Compare-and-jump Pseudo-instructions................... 8-7
8-4 Breakpoint Resource Status Word Bits 8-10
8-5 Compare and Jump Substitutionsccccvvvvvnnenn. 8-19
8-6 Data Cache Status Word BitSccccvvvvviiiniininnnnns 8-22
8-7 Instruction Cache Status Word Bits.............cccccunnnnnne 8-27
8-3 Call Pseudo-instruction Substitutions........................ 8-9

Overview

This chapter of thei960® ProcessoAssembler User's Guidentroduces
you to the 1960 processor assembler and to this manual.

This chapter describes:

* new featuresin the assembler

« using the assembler with other 1960 processor software tools

« the standards and conventions used by the assembler and in this
manual

» thetrademarks and copyrights pertaining to this manual

1960® Processor Assembler and Related Tools

The 1960 processor assembler is part of acomplete set of software and
hardware tools for devel oping embedded applications for the 1960
processors. Useic960 or gcc960, the 1960 processor assembler, and the
1960 processor software utilities to trandate, link, and format source text
into executable or PROM-programmable code. Y ou can write assembly
source text directly in atext editor or compile a C/C++ program to produce
assembly output. To create object files, you can assemble your source text
or the assembly output from the C/C++ compiler. Disassembled text from
the dumper is for debugging only and cannot be reassembled. For more
information on how the software tools work together, see the Getting
Started manual.

11

1 i960® Processor Assembler User's Guide

Compatibility and Standards

The assembler described in this manual supports the i960 Sx, Kx, Cx, JX,
Hx, Rx and VH processors.

The assembl er accepts output from Release 3.0 and later of the
CTOOL S960 compiler and from Release 1.2 and later of the GNU/960
compiler.

Y ou can specify the assembler object file output format as either

common object file format (COFF), b.out or ELF format. The output

format depends on the assembler invocation command, as shown:

* For b.out format, invoke the assembler with the gas960 command.

e For COFF format, invoke the assembler with the gas960c or asnmd60
command.

* For ELF format, invoke the assembler with the gas960e command.

For backwards compatibility with your existing script or batch files, the

directory structures and search paths used by the assembler depend on the

invocation name, as shown:

» For behavior smilar to the GNU/960 (Release 1.2 or later) assembler,
invoke the assembler with gas960, gas960c, or gas960e.

e For behavior similar to the CTOOL S960 (Release 3.5) assembler,
invoke the assembler with asn960.

Note that when you invoke the assembler as asm®60 you can generate the
COFF output format only.

About This Manual

This manual, thei960® Processor Assembler User's Guidspart of the
1960 processor software development tools manual set. See Getting
Started with the i960@Processor Software Development Tdolsalist of
al manualsin the 1960 processor development tools library.

1-2

Overview 1

Thei960® Processor Assembler User's Gulevides operating
instructions for the assembler. This manua does not teach devel opment
techniques.

Target Audience

To use the assembler effectively, you must be familiar with the 1960
architecture and the development process.

This manual does not provide detailed information about the target
processor. The processor manuals listed in Getting Started with the i960®
Processor Software Development Tamistain information such as:

e adescription of the i960 architecture

« the processor theory of operation and descriptions of the on-chip
devices

« information about low-level programming for particular processors

For additional information about these topics, order the relevant
publications listed in Getting Started with the iI960®rocessor Software
Development Tools

Conventions

In addition to the standard typographical conventions listed on the front
inside cover, this manual uses the following notation and format
conventions.

Caseissignificant for directives, functions, options, and option arguments.
On UNIX*, caseis also significant for invocation names and filenames.

Arguments and operands areinitalics. The operand names indicate the
function of the operands (for example, 7 i I enane, expr).

Directive and pseudo-instruction operands use the following notation:

addr represents an address.
al i gn represents an exponent of 2, used as an alignment
factor.

1-3

i960® Processor Assembler User's Guide

dat a represents ordinal, integer, or floating-point data;
the format of the data depends on the instruction
or directive.

int represents a positive integer.

name represents a symbol or label.

size represents an integer, used as a size factor.

string represents a sequence of ASCII characters.

expr indicates an expression.

Special characters, delimiters, and other punctuation used with the
operands, such as quotation marks and commas, are explicitly shown.

Notation for registers is one or more letters indicating the kind of register
and a number between 0 and 15, as follows:

global register aregister go through g14, and f p.
local register aregister pf p, sp, ri p, andr 3 throughr 15.

specia function register aregister available only on the 960 Cx and
HXx processors: sf 0-sf2 (Cx) and
sf0-sf4 (HX).

floating-point register aregister available only with on-chip floating-
point support: f po, fpl,fp2,andf p3.

For more information on the registers, see the processor manuals listed in
Getting Started with the iI960® Processor Software Development. Tools

Target expressions (t ar g) representing a memory address are assembled as
asigned displacement value representing an | P-rel ative address:

Format Displacement Target (targ)
COBR -210; 2107 =212 2124 from IP
CTRL =221 2211 -223: 2234 from IP

Overview

For convenience in cross-referencing material, the notation used in the
reference sections follows that of the processor manuals listed in Getting
Started with the iI960® Processor Software Development Tools

Customer Service

If you need service or assistance, see Getting Started with the i960®
Processor Software Development Tools

1-5

Writing Assembly Language Code for
the 1960® Rx Processor

Introduction

This chapter provides information on designing assembly language code

for use with the i960® Rx family of microprocessors, including the RP,

RD, RM and RN processors. It describes the two possible paths to follow

in designing assembly-language solutions for i960 Rx processors. The first

of these paths is the “Rx Strategy”, designed to ease transition to i960 Rx
processors beyond the RP, RD, RM and RN. The other path is the “Jx-
Specific Strategy”, designed specifically for Rx processors that are based
on the 1960 Jx core (such as the RP, RD, RM and RN) and providing
maximum low-level processor control.

What is the “Rx Strategy?”

The “Rx Strategy” refers to a set of CTOOLS enhancements implemented
to help you move from existing i960 RP, RD, RM and RN processors to
possible future implementations of the 1960 Rx family. CTOOLS added
the new- ARP, -ARD, -ARM and-ARN architecture switches, which

allow only those instructions that are most likely to be supported on future
1960 Rx processor offerings. In addition, CTOOLS provides
enhancements that have no effect on today’s 1960 Rx processors, but that
may be used on future processors.

How Do | Use the Rx Strategy?

Using the Rx strategy is as simple as specifying-theP, - ARD, - ARM
and- ARN option when invoking the CTOOLS utilities. (You can also set

2-1

i960® Processor Assembler User's Guide

2-2

the $1 960ARCH or $&60ARCH environment variablesto RP, RD, RM, and
RN.)

How Do | Use the Jx-Specific Strategy?

If you decide not to follow the Rx strategy, usethe - AJF architecture
option when creating code for use with 1960 RP and RD processors. For
information on specific differences between the - ARx switches and the

- AJF switch, please see Details of the “Rx Strategy” For help deciding if
the Rx strategy is the best choice for your application, please read the next
section.

How Do | Decide Which Strategy to Use?

Use these questions to help you decide which of the two devel opment
paths you should follow:

« How important is backward-compatibility with other i960 core
processors (e.g., KA, CF, JF)Pf you have legacy code that you wish
to use with the 1960 Rx processors, you may want to use the - AJF
switch. Doing so gives you the most flexibility in terms of available
instructions and addressing modes.

« How important is forward-compatibility with future i960 processors?
If you wish to minimize the effort involved in moving to future Rx
processors, you should use the Rx strategy.

* Will you be writing my applications from scratctWhen writing new
applications, follow the Rx strategy when possible. Tests have shown
that there is seldom a significant performance or code size penalty, and
you may actually see an improvement in either area.

¢ How much low-level processor access do you ndégdu need
access to low-level processor resources such as the PC (Process
Control) or TC (Trace Control) registers beyond that provided in the
updated assembler pseudo-instructions (see Improved Assembler
Pseudo-Instruction Support for gas960/asm9606u cannot use the
RXx strategy.

Writing Assembly Language Code for the i960® Rx Processor 2

Based on your answers to the questions above, you should now be able to
decide which path to follow: the Rx strategy or the Jx-specific strategy.
After you make your decision, read the corresponding section below for
specific tips on making the most of your programming environment. If
you choose to follow the Rx strategy, please read Writing Assembly Code
With the Rx Strategy. If you choose to follow the Jx-specific strategy,
please read Writing Assembly Code Without the Rx Strategy.

Writing Assembly Code With the Rx Strategy

To take advantage of CTOOL S enhancements supporting the Rx strategy,
simply use the Rx architecture switches (e.g., - ARP, -ARD, -ARM and-
ARN) for al applicable CTOOLS applications. Y ou can also set the
$1960ARCH or $G960ARCH environment variablesto RP, RD, RM and
RN. If you are migrating code written for other 1960 core processors (e.g.,
KA, CF, HA), you can use xlate960, the 80960 translation utility as a
starting point for your migration. The translator generates Rx-compatible
code sequences to replace instructions and addressing modes that appear in
the JF processor but not the Rx strategy. See xlate960, 80960 Assembly
Language Translator for information on using this application.

If you need to use some of the JF-specific features not supported in the Rx
strategy, such as disabling interrupts, cache control, or atomic accesses,
you can use the new assembler pseudo-instructions. The primary benefit
of using these instructions is that they should not require modification
when assembled for future 1960 Rx processors. Information on these new
pseudo-instructionsis available in Improved Assembler Pseudo-instruction
Support for gas960/asm960. Note that if you use any of the new 1960
processor pseudo-instructions you are required to re-assemble your source
before running it on 1960 Rx processors that are not based on the 1960 JF-
core. Thisis because the instruction sequence generated for the new
pseudo-instructions is not guaranteed to be compatible with future Rx
Processors.

Finally, specific information on the architectural implications of - ARP, -
ARD, -ARM and-ARN switchesarein Details of the Rx Strategy.

2-3

i960® Processor Assembler User's Guide

2-4

Writing Assembly Code Without the Rx Strategy

To write code that is designed for 1960 JF-based Rx processors only, use
the JF architecture switch (- AJF) for all CTOOLS that require you to
specify an architecture. (Y ou can also set the $1 960ARCH or $G960ARCH
environment variablesto JF.) You can still simplify future migration
efforts by staying within the boundaries of the - ARx switch whenever
possible. See Details of the Rx Strategy for information on the
reguirements.

For low-level processor functionality such as disabling interrupts, cache
control, or atomic accesses you may wish to use the new assembler
pseudo-instructions detailed in Improved Pseudo-instruction Support for
gas960/asm960. This, too, may ease future migration without excluding
use of JF-specific constructs.

Details of the Rx Strategy

80960 Instruction Set Support

The implementation of the - ARx architecture options have been redefined
in CTOOL S to represent a subset of the i960 Jx processor instruction set
chosen for performance and future compatibility reasons. These
restrictions are enforced by the assembler and other toolswhen an - ARx
switch is used or when an 1960 Rx architecture is specified using the

| 960ARCH Or GB60ARCH environment variables.

The following 1960 Jx processor instructions are not supported with the
1960 Rx architectures:

Writing Assembly Language Code for the i960® Rx Processor

addi hal t reno
addi <cc> intctl shli

at add | dt shrdi

at nod mar k spanbi t
cnpdeci nodac stib
cnpdeco nodi stis

cnpi nci nodi fy stt

cnpi nco nodt ¢ subi
concnpi nov| subi <cc>
concnpo novq sysct |
eshro novt t est <cc>
extract not or xnor

faul t <cc> rem

In addition, the following addressing mode restrictions exist for MEM

format instructions when specifying an i960 Rx processor-based target:

e Indexed addressing modes are not available.

e |P-relative addressing is not available.

« Two-word MEM-format is not available for the following instructions:

| dl

st

| dq

stq

bx

cal | x

¢ Thebal x instruction may only use register-indirect addressing (no
offsets or displacements allowed).

Ooooood

Other consequences of using the 80960Rx output architectures are:

e Thecal |l s instruction may use register g13 or aliteral asitstarget
only.

* For the modpc instruction, the mask cannot specify the same register as
the src/dst register.

i960® Processor Assembler User's Guide

e The Process Controls register is undefined in the Rx architecture, so
use of the nodpc instruction is not recommended.

e Thescanbit instruction isnot guaranteed to set the condition code.
The following instruction sequence duplicates the functionality of the
scanbi t instruction and is guaranteed to set the condition code:

scanbi t srcl, dst

not bi t 31, dst, dst
chkbi t 31, dst, dst
not bi t 31, dst, dst

e Thecal |l j x pseudo-instruction requires a second argument, a
temporary register into which the address of the first argument can be
loaded.

» Theassembler recognizescal | 4, cal | 8, and cal | 12 instructions.
These instructions are identical to the traditional cal | instruction
except that the two low-order (reserved) bits of the instruction word
are set as shown:

Instruction Bit 1 Bit 0
call 4 0 1
call8 1 0
call 12 1 1

e Theassembler recognizescal | 4, cal | 8j ,and cal | 12j pseudo-
instructions. They are treated by the assembler identically to the
cal Ij pseudo-op except they set the low-order bits as indicated in the
table above if they are optimized into corresponding cal | 4, cal | 8, or
cal 1 12 instructions.

In addition, a new assembler pseudo-op has been added:

b _960a | abel

This pseudo-op is reserved and should not be used by application software.
The assembler generates an instruction, a no-op instruction, whose

Writing Assembly Language Code for the i960® Rx Processor

execution effectively leaves the state of the existing 80960Rx, 80960Jx,
and 80960Hx processors unchanged. It is uncertain if this pseudo-op will
continue to function in the same manner on future 80960 processors.

The assembler will generate the following no-op instruction for a b_960a
| abel pseudo-op:

addino TARG fp,fp
where TARGIS (I abel -IP-4)/4 and 0 < TARG< 15

Big-Endian Support

Big endian byte order is not supported when code is being generated for
the 1960 Rx processors.

b.out OMF Support
gas960, the b.out assembler, does not support an 1960 Rx target.

80960 Assembly Language Converter (xlate960)

To ease the task of converting legacy assembly language code for use with
the new 1960 RP/RD/RM/RN processors, CTOOL S 6.5 includes xlate960.
The xlate960 program converts assembly language code from 80960 core
processors (e.g., 1960 Cx, Jx, and Hx processors) to its COREO (e.g.,
80960Rx) equivalent. xlate960 performs both instruction translations and
addressing-mode translations. Instruction translation occurs when the target
architecture does not support a translatable instruction from the source
architecture (e.g., movt). Addressing mode trandlation occurs when the
target architecture supports a restricted form of an instruction from the
source architecture (e.g., cal | x). For more information on xlate960, see
the i960® Processor Software Utilities Manual

2-7

2

i960® Processor Assembler User's Guide

2-8

Improved

Assembler Pseudo-Instruction Support

Introduction

A number of pseudo-instructions have been added to the CTOOL S
assembler to ease migration between processors. These pseudo-ops
provide an architecture-independent method for performing some of the
more common low-level processing operations. Using these pseudo-ops
should reduce the number of changes required when moving assembly
code from one 1960 processor to ancther. Table 2-1 lists al of the new
pseudo-instructions supported by the CTOOLS assembler. See Chapter 8
for descriptions of the new pseudo-ops and instructions on using them.

Writing Assembly Language Code for the i960® Rx Processor

Table 2-1. New Assembler Pseudo-Ops

Instruction
atomic_add
atomic_maodify
bkpt_request
cc_read
cc_scanbit
dc_disable

dc_enable
dc_invalidate
em_read

ic_disable

ic_enable
ic_invalidate
ic_load_lock
insn_trace_mode_read
insn_trace_mode_set
interrupt_state
ip_read

pri_read

sw_reinit

trace_enable_set

Action

Atomic add

Atomic modify

Request breakpoint resources

Read condition code

Scan for bit, modifying condition code
Disable data cache

Enable data cache
Invalidate data cache

Read execution mode
Disable instruction cache
Enable instruction cache
Invalidate instruction cache
Load and lock instruction cache
Read instruction trace mode
Set instruction trace mode
Read interrupt state

Read instruction pointer
Read execution priority
Reinitialize processor

Set trace enable bit

2-9

Invoking the Assembl er

This chapter discusses the assembler invocation syntax, options, input, and
output and explains how to automate assembly. Y ou can invoke the
assembler from the operating system prompt or from a script or batch file.

Invocation Command

Invoke the assembler as follows:
asm60 | gas960 [¢ | e] [-option]... [source]... [...]

asmb60 Or gas960c invokes the assembler to generate COFF output.
The dua syntax provides backwards
compatibility with previous versions of the
iC-960 and gcc960 C compilers.

gas960 invokes the assembler to generate b.out format
output.

gas960e invokes the assembler to generate ELF format
output.

option isan invocation option (described in Chapter 4)

affecting assembler input, operation, and output.
Arguments can follow some options. Caseis
significant.
Precede the options with ahyphen (-). In
Windows, you can use aslash (/) instead of the
hyphen.

source isan assembly source filename. Y ou can provide

a complete path name for each sourcefile. The
default search path isthe current directory.

31

i960® Processor Assembler User's Guide

Y ou can interleave options and source filenames.

NOTES. On UNIX, caseissignificant for all parts of the assembler
invocation syntax. In Windows, case is significant only for the options and
option arguments.

Examples throughout this manual use a UNIX host system and the
gas960e invocation command and directory structures, unless otherwise
noted.

The b.out assembler does not support the i960® RD/RP Processors.

Specifying Option Arguments

Some options require arguments. The assembler interprets any string
following such an option as the option argument. Omitting an option
argument at the end of the command line causes an error. For example:

gas960e nyprog.as -0
gas960: Expected a filenane after -o.

You can put a space between an option and its argument. The following
are both correct:

gas960e nyprog.as -onyprog. o
gas960e nyprog.as -0 nmyprog.o

An incorrect argument causes an error message appropriate to the option.
See Chapter 4, Option Reference, for information on the valid arguments
for each option.

Specifying Single and Multiple Options
Precede options with a hyphen):(
gas960e nyprog.as -0 nmyprog.obj -W-V

Invoking the Assembler

On Windows* 95/Windows NT*-based machines, you can use a slash (/)
instead of the hyphen.

Any string that does not begin with a hyphen and is not positioned as an
option argument is interpreted as a source filename. The following
example shows the message caused when the Vv option is specified without
a hyphen and no file named V is in the search path:

gas960e -W YV nyprog. as

Can't open V for reading.
No such file or directory.

Some options consist of a single character with no arguments. Y ou can
specify two or more such options as an option group with a single hyphen:
gas960e nyprog.as -0 nyprog.obj -W

Using Uppercase and Lowercase

Depending on your host system, case can be significant in the assembler
invocation name. For example, on Windows, entering ASMB60 is the same
as entering asm®60. On UNIX, you can invoke the assembler with asnB60
but not with ASMD60.

Regardless of your host system, case is significant in the options and
arguments. For example, an uppercase Wis valid, but alowercase w causes
the following message:

Unrecogni zed option: w

i960® Processor Assembler User's Guide

34

Naming the Object File

After a successful assembly, the assembler produces an object filein
common object file format (COFF), b.out or ELF format. To generate a
COFF object file, invoke the assembler with asn960 or gas960c. To
generate a b.out format object file, invoke the assembler with gas960. To
generate an ELF file, use gas960e. For adescription of the COFF file
format, see your utilities user's guide. For adescription of ELF, seethe
Intel 80960 EABI specification (Intel Literature order number 631999)
listed in Getting Started.

When you specify asource filewith the. s or . as extension, the assembler
creates an object file with the extension . o. When you specify afile with
any other extension (or none) the assembler creates an object file with full
source filename (including its original extension) with . o appended.

When you provide the first block of input interactively, the object filename
isa. out for COFF output, b. out for b.out format output, and e. out for
ELF output. For example, the following produces a single object file
named ex1. o:

gas960e exl.s ex2.s ex3.s

To specify the object filename, use the o option. For example, the
following creates or replaces an object file named ex1. o:

gas960e exanple.src -0 exl.0

The assembler can overwrite an existing file unless the filename ends in
.s,.as, 0r.asm To ensure your source files are not accidentally
overwritten, use the protected filename extensions. For example, if ex1. s
exigts, the following stops assembly with an error:

gas960e exanmple.s -0 exl.s
FATAL: CQutput file will overwite existing protected file.

Additional software utilities are available to read and reformat the object
file, as described in the i960® Processor Software Utilities User's Guide

Invoking the Assembler

Providing Source Input

Y ou must provide source text from at least one of:
« afilenamed in the assembler invocation command

e stdin, such asthe keyboard or the redirected output of another
command

For information on st di n, see your host operating system documentation.

An assembly sourcefileisan ASCII file of assembly language instructions
and assembler directives. Y ou can write the assembly source using a text
editor or generate an assembly file with the C compiler.

For interactive input, specify thei option and provide lines of assembly
source from st di n (for example, lines entered from the keyboard or piped
from another application). The following example pipes the output of a
script named nybui | d (invoked with the UNIX C shell primitive sour ce
command) into the assembler:

source mybuild | gas960e -i
For information on piping, see your host operating system documentation.

To end keyboard input, typethe Ct r I - d key combination on anew line.
The following keyboard-entry example assembles five lines, naming the
output object filee. out :

gas960e -i

roundr g0, fpO

subr fp0O, g0, g0

expr g0, g0

addr 1.0, g0, g0

scaler g1, g0, g0

Yol

In the invocation command, list sourcesin the order in which you want
them assembled. The assembler concatenates all source files and

interactive input, then assembles instructions and data into sections by
order of appearance in the source text.

i960® Processor Assembler User's Guide

3-6

The following example assembles source from ex1. s, then from
interactive input (thei option), then fromex2. s. Program elements from
any one block of the input (for example, ex1. s) are available to any other
block of theinput (for example, ex2. s) asif al theinput werein asingle,
sequential file.

gas960e exl.s -i ex2.s

Y ou can use other assembler options and source files with interactive
input. The following example displays the assembler version and begins
interactive input from the keyboard:

asnd60 -V -i
To ensure your source files are not accidentally overwritten, usethe. s,

. as, or . asmprotected filename extensions, as described in Naming the
Object File on page 2-4.

Environment Variables

Environment variables set default operating parameters, such as search
paths and the target architecture. For alist of environment variables and
their uses, see your Getting Started manual. Define the environment
variables before invoking the assembler.

The assembler supportsall 1 960 and G360 environment variables,
preferring those that match the invocation style. For example, when you
invoke the assembler as asn960, the assembler looks first for 1 960
environment variables, and for those settings not found, looks for G360
environment variables. The environment variables used by the assembler
arelisted in Table 3-1.

Invoking the Assembler

Table 3-1. Assembler Environment Variables

gnhu Tools Name CTOOLS Name Purpose

GO60ARCH 1 960ARCH Specifies target architecture.

@601 DENT 1 9601 DENT Allows use of the COFF .ident directive.
G2601 NC 1 9601 NC Specifies include directory path.
(O60BASE | 960BASE Specifies base environment directory.
GO60XLT 1 960XLT Specifies translator (xlate960) location.

For more information on environment variables, see your host operating
system documentation.

Selecting the Instruction Set and Libraries

The assembler reports an error for any instruction in your source text that is
not valid for your target processor instruction set. To assemble for a
specific 1960 processor, you can define the | 960ARCH or G360ARCH
architecture environment variable. Then, you need use the A option
(described in Chapter 4) only to override the environment variable.

L eaving the environment variable undefined and omitting the A option
assembles for the 1960 KB architecture.

To specify the default instruction set, define the architecture environment
variable as SA, SB, KA, KB, CA, CF, JA, JD, JF, JT, RD, RP, RM RN, HA, HD,
HT and VH. For example, the following specify SA instructions unless a
different processor is specified with the A option:

csh setenv | 960ARCH SA
sh or ksh | 960ARCH=SA; export | 960ARCH

Other 1960 processor software tools also use the architecture environment
variable, as described in Getting Started.

Defining a Base Directory Path

Y ou can set an environment variable to the assembler and utilities base
directory. Such avalue can be useful for setting other search-path

37

i960® Processor Assembler User's Guide

3-8

environment variables. The following defines a base-directory
environment variable named G360BASE:;

csh set env (B60BASE /usr/l ocal /i ntel 960
sh or ksh GO60BASE=/ usr/ 1 ocal /i nt el 960; export GI60BASE

Defining an ldentification String

To put assembler identification and information from the . i dent directive
into a COFF object file, define the | 9601 DENT or G601 DENT environment
variable to any non-null value, as shown in the following example:

csh setenv 19601 DENT 1
sh or ksh | 9601 DENT=1; export 19601 DENT

Redirecting Error and Warning Message Output

The | 960ERR variable lets you specify whether messages are directed to
stdout or stderr. When | 960ERR s not set, messages go to st dout .
When | 960ERR s set to anon-null string, the output goesto st derr. This
variable functions under Windows only.

Building a Search Path for Include Files

Y ou can extend the search path as follows for files included with

.include:

» The assembler aways searches the current directory first.

* You can specify additional directorieswith the | option, described in
Chapter 4, Option Reference.

* You can specify adefault list of directories, separated with colons (3),
with 1960INC or G960INC. When you do not use the | option, the
assembler searches the directories specified by 1960INC or G960INC.

Note that when you use both the I option and the 1 9601 NC or G9601 NC
variables, the environment variable setting takes precedence.

Invoking the Assembler

The following commands set 3601 NC to
lusr/local/intel 960/i ncl ude:

csh setenv @601 NC /usr/l ocal /intel 960/i ncl ude
sh or ksh 39601 NC=/ usr /1 ocal /i ntel 960/ i ncl ude; export G601 NC

Building the Search Path for the Assembler
Executable

To invoke the assembler from any directory, add the assembler directory to
your PATH environment variable. Once the directory isin your PATH, you
need not use the directory path name to invoke the assembler.

For example, with | 960BASE set to your assembler base directory, you can
augment your PATH as follows:

csh set env PATH $I 960BASE/ bi n: $PATH
sh or ksh PATH=$| 960BASE/ bi n: $PATH, export PATH

39

Option Reference

This chapter describes the assembler options alphabetically. Table 4-1
summarizes the option names, arguments, effects, and defaults.

The following notation is used in this chapter:

{itenitent Select one of the items listed between braces. A
vertical bar (]) separates the items.

[items] Items enclosed in brackets are optional.

Table 4-1 Assembler Options

Default Action of the

Option Effect of the Option Assembler

A { SA|SB]| selects the instruction set. uses the instruction set

KA | KB | specified by the I960ARCH
CA|CF|JA| or G960ARCH environment
JD | JF|JT| variable, if defined;
RD|RP|RM|RN | otherwise, uses KB.

HA | HD | HT | VH |

COREQ |

COREL1 |

CORE2 |

CORE3 | ANY }

D sym[=value] defines an absolute symbols must be defined in

symbol. Symbols defined the source text.
in this way can be used in
.if and .ifdef expressions.

d retains debug information discards symbolic information
for local symbols beginning for local symbols beginning
with L or a dot (.). with L or a dot (.).

G generates big-endian generates little-endian code.

COFF or ELF code.

4-1

i960® Processor Assembler User's Guide

4-2

Table 4-1

Assembler Options (continued)

Option

h

| directory path

L list_options

o objfile

p{c|d]b}

v960

Effect of the Option

Help: prints a brief
description of each option.
adds directories to the
search path for include files.

reads source from st di n.
generates a listing. Listing
sub-options modify the
listing behavior.

do not replace compare-
and-branch instructions.
specifies an object filename.

generates
position-independent
instructions and/or data.
displays a version message
and continues the assembly.
displays a version message
and stops the assembly.
suppresses the warning
messages.

generates warnings about
architecture mismatches.

suppresses the object file
header time-and-date stamp
for COFF assembler.

Default Action of the
Assembler

no help text is printed.

searches in the current directory
and uses the 1960INC or
G960INC environment variable.
reads source from files.

no listing is generated.

replaces compare-and-branch
instructions.

uses a.out, b.out, e.out, or a
filename derived from the first
source filename.

generates position-dependent
code and data.

displays no version message.

displays no version message;
the assembly proceeds.
displays the warning messages.

generates error message when
it encounters architecture
mismatch.

writes the assembly time and
date in the object file header.

Option Reference

A: Architecture

Select the architecture
(instruction set)

A arch

arch iSSA, SB, KA, KB, CA, CF, JA, JD, JF, JT, RD, RP,
RM RN, VH, HA, HD, HT, COREO, CORE1, CORE2,
CORE3, Or ANY.

Discussion

To select your i960® processor instruction set, specifpigtion. The
assembler displays an error message for each instruction in the source text
that is invalid for the selected architecture, or a warning when you use the
x option.

Without thea option, the assembler uses the instruction set specified by the
| 960ARCH Or ®60ARCH environment variable. If the architecture
environment variable is undefined, the assembler uses the KB instruction
set.

New CORE Architecture Options

With CTOOLS release 5.1 and later, the assembler supports architecture
settings to allow the generation of code that is compatible with multiple
1960 processor types. These settings are referredctveaarchitectures.
Table 4-2 shows the types of 1960 processors that are supported by each
core architecture.

4-3

i960® Processor Assembler User's Guide

4-4

Table 4-2. COREO-3 Architecture Compatibilities

-A Switch Used Compatible Architectures

COREO Jx, HX, Rx, VH*

CORE1 KX, Sx, Cx, Jx, Hx, VH*
CORE2 JIX, Hx, VH*

CORE3 Cx, Jx, Hx, VH*

* Except for Big-Endian mode which is unsupported in VH.

D: Define symbol

Define an absolute
symbol from the
command line

D synbol [=val ue]

synbol is the name of the symbol you want to create.
val ue isany valid non-relocatable expression.
Discussion

Thisoption isintended to be used with the. i f and . i f def directivesfor
conditional assembly. It resemblesthe similar compiler preprocessor
option. If =val ue isleft blank, then the value of naneissetto 1. If you
want to include spaces anywhere with synbol =val ue, then the entire
symbol =val ue must be quoted.

Examples

The following creates a symbol called f oo and setsitsvalueto 1.
gas960 -D foo file.s

Option Reference

Withinfil e. s, both of the following would evaluate to true:

.if foo

.ifdef foo

gas960 -D "foo = bar * 12" file.s

Withinfil e. s, the symbol bar must be defined and be non-relocatable.
gas960 -D foo=0 file.s

4-5

i960® Processor Assembler User's Guide

4-6

Withinfil e. s, the expression
.ifdef foo

istrue, but the expression

.if foo

isfalse. (Seethediscussionof .if and.ifdef in Chapter 5.)

d: Debug symbols

Keep debugging
information about
assembler temporary
symbols

d

Discussion

The assembly output from the compiler contains local symbols beginning
with an L, as generated by agcc960 invocation of the compiler, or adot
(.), asgenerated by an i c960 invocation of the compiler. To retain such
symbolsin the object-file symbol table, specify thed option. Without d,
the assembler removes all such local symbols.

Examples

The following shows the original C source text and the corresponding
assembly output with the local symbols generated by agcc960 invocation
of the compiler:
if (a==b)

hi =b;
el se

hi =c;

Option Reference I

The compiler assembly output (inthefilecnset . s) is:

cmpi g0, gl

be L1

b L2
L1: st g1, hi

b Al
L2: st r6, hi

Al:

Thefollowing puts L1 and L2 in the object-file symbol table:

gas960c -d cnset.s

G: Big-endian target

Produce a COFF or
ELF file for a big-
endian target

G

Discussion

Y ou can configure COFF or ELF program text-type and data-type sections

in either big-endian or little-endian byte order. For big-endian instructions

and data, specify the G option when:

« assembling for the C-series, J-series, or H-series architecture

« invoking the assembler with asm960 or gas960c (COFF only) or
gas960e (ELF only)

Note that the i960 RD/RP/RM/RN/VH processors do not support big-
endian byte order, even though their core processor is an 80960Jx.

For byte-order information, see C: A Reference Manual.

4-7

i960® Processor Assembler User's Guide

Example

The following produces a COFF file for a big-endian target. The .text- and
.data-style sections of the COFF file isin the host byte order, regardless of
the G option.

gas960c -G - ACA big. a

I: Include-file search path

Augment the search path
for includefiles

| path

pat h isadirectory pathname.

Discussion

The assembler always searches the current directory for . i ncl ude

filenames. Y ou can augment the search path by:

e defining the 1960INC or G960INC environment variable (described in
Chapter 3) before invoking the assembler

« using the | option once or more when invoking the assembler

The search path sequenceis:

1. the current working directory

2. any directories specified by 1 9601 NC or G601 NC, in the order defined
3. any directories specified with I , in the order on the command line

Option Reference

Example

Thefollowing linein the mat hr . s sourcefileincludesthe/ nyli b/ fp.s
sourcefile:

.include "fp.s"
when invoked as:
asm960 mathr.s -1/nylib

I Input from stdin

Include keyboard or
redirected input

Discussion

Y ou must provide source text from at least one of:
« afilename specified on the command line

« thekeyboard, the redirected output of another command, or any other
device designated as stdin

For st di n input, use thei option once in the assembler invocation. To
assemble keyboard input, after entering the command line, enter lines of
source text from the keyboard. To end the keyboard input, enter the

Ctrl - d key sequence on anew line. To assemble redirected output from
another application, pipe the application output into the assembler
invocation. You heed not enter Ct r | - d to end the redirected input.

Y ou can use both thei option and zero or more source filenames. The
assembler processes the st di n input in sequence with any source files.

4-9

i960® Processor Assembler User's Guide

4-10

When st di n isthefirst or only source specified on the command line, the
default object filenameisa. out for a COFF object file, b. out for ab.out-
format object file, and e. out for an ELF format objet file. Usetheo
option to specify a different object filename.

For information on piping and on st di n, see your host system manual.

Examples
1. Thefollowing assembles severa lines of code from the keyboard after
the source text from the pr edef . s file:

gas960e predef.s -i
roundr g0, fpo

subr fp0O, g0, @O
expr g0, g0
addr 1.0, g0, ¢o0

scal er gl, g0, go
~d
2. Thefollowing assembles the output from the get pat ch script
(invoked with the csh primitive sour ce command) betweensrcl. s
andsrc2.s:

source getpatch | gas960e srcl.s -i src2.s

L: Generate a listing

Print an assembly listing
on the screen or into a
file

L [option [option-arg]]

option is one of the following:
a list al lines, ignoring .nolist directives.
e list text and data in target-endian byte order.

Option Reference

f print thelisting into afile. option-arg isthe
name of thefile.

n do not list filesincluded with .include.

t use option-arg asthelisting title. If the

title contains spaces, then it must be quoted.
This option overrides .title directivesin the
source.

z do not print the listing header.

Discussion

With no options, the listing is printed on the standard output and al listing
defaults arein effect. Optionsthat do not take arguments can be catenated
together (with no spaces) after asingle L option. Space is optiona between
an option that takes an argument and the argument.

The byte order of the listing is always target-endian when listing data
sections. For text sections, instructions are printed big-endian ("left-to-
right") unless you specify Le, and then they are printed in target-endian
byte order.

Examples

Several example listings follow. Where appropriate, the contents of the
assembly language file is also shown. The first example shows the
simplest listing invocation.

Thefilel i st ex1. s contains:

.title "Listing Exanple 1"
. text

nmov g0, g1
.data

.short 0x1234

The assembler invocation command is:
$ gas960e -L listexl.s

4-11

i960® Processor Assembler User's Guide

Li sting Exanple 1

ASSEMBLER VERSION: Intel 80960 ELF Assenbler, 6.0.6011, Thu Sep 26
23:25: 43 MST 1997

TIME OF ASSEMBLY: Mon Oct 21 23:48:16 1997 COWAND LI NE: gas960e -L
listexl.s

Nunmber of errors: 0

Nunmber of warnings: O

Source File: listexl.s

1 000000 .title "Listing Exanple 1"
2 000000 . text

3 000000 5c881610 nov g0, g1

4 000004 .data

5 000004 3412 . short 0x1234

The next example shows - Lz, (don't print the listing header), and - Lf ,
(print listing in afile).

$ gas960 -Lz -Lf listexl.L listexl.s

Thefileli st ex1. L contains:

Source File: listexl.s
1 000000 .title "Listing Exanple 1"
2 000000 . text
3 000000 5c881610 nov g0, gl
4 000004 .data
5 000004 3412 .short 0x1234

The next example shows the effect of the . nol i st directive on thelisting.
Thefileli stex2. s contains:
.title "Listing Example 2"
. text
mov go0, gl
.data
.short 0x1234
. nol i st
.asciz "Skip strings in the listing"
.asciz "Skip this one too"
st
.word 0x12345678

4-12

Option Reference

The assembler command is:

$ gas960e -L listex2.s
Li sting Exanple 2
ASSEMBLER VERSI ON: I ntel 80960 ELF Assenbler, 6.0.6011, Thu Sep 26
23:25:43 MST 1997
TIME OF ASSEMBLY: Mon Cct 21 23:51:23 1997 COWAND LI NE: gas960e -L
listex2.s

Number of errors: 0

Number of warnings: O

Source File: listex2.s

1 000000 .title "Li sting Exanple 2"
2 000000 .text

3 000000 5c881610 nov g0, gl

4 000004 .data

5 000004 3412 .short 0x1234

6 000006 .nol i st

7 000006 st

8 000006 7856 3412 .word 0x12345678

The. nol i st directive can be defeated from the command line with - La;

$ gas960c -Lza listex2.s

Source File: listex2.s

000000 .title "Listing Exanple 2"

000000 .text

000000 5c¢881610 mov g0, gl

000004 .data

000004 3412 .short 0x1234

000006 . nol i st

000006 536b 69702073 .asciz "Skip strings in the
ng"

00000c 7472696e 67732069

000014 6e207468 65206c69

00001c 7374696e 6700

000022 536b .asciz "Skip this one too"

000024 69702074 68697320

00002c 6f 66520 746f 6f 00

000034 st

000034 78563412 .word 0x12345678

TN OB~ WN R

|ist

O © 000000 ~N~NN

[EnY

4-13

i960® Processor Assembler User's Guide

4-14

Sour ce

QOO UM~ WNEE

Sour ce

QOO U hA~WNEE

Normally, text sections are listed in big-endian byte order. This matches
left-to-right ordering of instructions in manuals. Y ou can override this
behavior on the command line with - Le. Note in the next example that the
listing show the exact ordering of bytesin the object file:

$ gas960c -Lze listex2.s

File: listex2.s

000000 .title "Listing Exanple 2"
000000 .text

000000 1016885c nov g0, gl

000004 .data

000004 3412 .short 0x1234

000006 .nolist

000034 st

000034 78563412 .word 0x12345678

Here is another example that shows big-endian byte order in both the text
and data sections:

$ gas960c -ACA -G -Lze listex2.s

File: listex2.s

000000 .title "Listing Exanple 2"
000000 .text

000000 5c¢881610 nov g0, gl

000004 .data

000004 1234 .short 0x1234

000006 .nolist

000034 st

000034 12345678 .word 0x12345678

The next example shows the effect of the . i ncl ude directive on the
lising. Thefileli st ex3. s contains:

.title "Listing Exanple 3"
.text
mov go0, gl
.i fdef | NCLUDE4
.include "listex4.s"
.endi f
.data
.short 0x1234

Option Reference

Sour ce

Sour ce

O~NO OB~ WNBE

Thefilel i st ex4. s contains:

f oo:
| dconst -1, g6

The assembler command is:
$ gas960 -Lz -D I NCLUDE4 |istex3.s

File: listex3.s

000000 .title "Listing Exanple 3"
000000 .text

000000 5c¢881610 nov g0, gl
000004 .i fdef | NCLUDE4
000004 .include "listex4.s"
File: ./listex4.s

000004 f oo:

000004 59b01901 | dconst -1, @6
File: listex3.s

000008 .endif

000008 .data

000008 3412 .short 0x1234

Y ou can tell the assembler to not list include files with - Ln:
$ gas960 -Lzn -D I NCLUDE4 |istex3.s

File: listex3.s

000000 .title "Listing Exanple 3"
000000 . text

000000 5c¢881610 nov g0, gl

000004 .i fdef | NCLUDE4

000004 .include "listex4.s"

000008 .endif

000008 .data

000008 3412 .short 0x1234

The last example shows how to overridethe . ti t | e directive from the
command line with - Lt :

$ gas960e -Lt "LISTING EXAMPLE 247" |istex3.s

4-15

i960® Processor Assembler User's Guide

4-16

LI STI NG EXAMPLE 247

ASSEMBLER VERSI ON: I ntel 80960 ELF Assenbler, 6.0.6002, Thu Sep 26
23:25: 43 MST 1997

TI ME OF ASSEMBLY: Mdn Cct 21 23:54:54 1997

COWAND LI NE: gas960e -Lt LI STI NG EXAMPLE 247 |istex3.s

Nunber of errors: 0

Nunmber of warnings: O

Source File: listex3.s

1 000000 .title "Listing Exanple 3"
2 000000 .text

3 000000 5c881610 nov g0, g1

4 000004 .i fdef | NCLUDE4

5 000004 .include "listex4.s"

6 000004 .endif

7 000004 .data

8 000004 3412 .short 0x1234

n: No compare-and-branch replacement

Do not replace
compare-and-branch
instructions

Discussion

For short conditional branches and jumps, you can save execution time and
space by using a single compare-and-branch (COBR) instruction. The
branch address can be any expression that evaluates to a 13-bit value.

To stop the assembler with an error when the branch address is out of
range, specify then option. Without n, the assembler replaces the short-
range compare-and-branch instruction with two instructions.

Option Reference I

Examples

1

In the following, n prevents the assembler from expanding the cnpi be
instruction for the undefined external nt.. The assembler displays an

€rror message.

$ gas960e -i -n
cnpi be g0,91, m
D

can't use COBR fornmat with external | abel
Without n, and with the s option, the following replaces cnpi be:

0: 5a046090 cnpi g0, 91
4: 12fffffc be ni

o: Object filename
Name the object file

o objfile

objfile isavalid filename.

Discussion

To specify the object filename, use the o option with afilename or a
complete pathname. The default object filename isin the current directory:

afilename based on the first source filename on the command line,
replacing any .s or .as source-filename extension with .o or appending
.0 to any other source filename after the extension.

a.out, when you invoke the assembler with asm960 or gas960c (for
COFF output) with interactive input as the first or only source.

b.out, when you invoke the assembler with gas960 (for b.out-format
output) with interactive input as the first or only source.

e.out, when you invoke the assembler with gas960e (for EL F output)
with interactive input as the first or only source.

4-17

I i960® Processor Assembler User's Guide

To avoid accidentally overwriting your source files, use a protected . s,
. as, or . asmsource-filename extension (the assembler does not overwrite
existing files with one of these extensions).

Example

The following names the output file pr og1. o:
asmP60 nmyprog.asm -0 progl.o

p: Position independence

Mark the COFF or ELF
object file as containing
position-independent
code or data

p type
type is one of the following:

c indicates position-independent code.

d indicates position-independent data.
indicates both position-independent code and
data.

Discussion

To indicate position-independent code or datain the COFF or ELF file, use
the p option. You can also usethe. pic, . pi d, and. | i nk_pi x directives,
described in Chapter 5.

Example

The following marks the object file as position-independent:
asnd60 -pb nypi 23.s

4-18

Option Reference

t: Translate

Process all sourcefiles
with the xlate960
trandation utility before
assembly

Discussion

To first process the input source file with x1 at e960, uset . x| at e960
attempts to trandate the source file to its COREO (e.g., 80960RX)
equivalent. If any errors occur during the translation process, the
assembler does not attempt to process the x1 at e960 output file. This
includes instances where the tranglator output file requires manual
adjustments.

Example

The following shows an example invocation of xlate960 from the
assembler command-line:

$ cat myprog.s

addino r5,r6,r7

$ gas960e nyprog.s -t -ARP
$ gdnp960 nyprog. o

Section ‘.text”

0: 78398005 addono r5,r6,r7

Section ‘.data’:

4-19

i960® Processor Assembler User's Guide

4-20

L)

In this example, the translator converted the 80960 CORE instruction
addi no with the 80960 COREO-compatible instruction addono.

NOTE. Thet (trandate with xlate960) option isincompatible with the i
(process input from stdin) command-line option.

V, v960: Version

Display the assembler
version number and

creation date

O
([

960

Discussion

To display aversion message on st dout during assembly, usev. After
displaying the message, the assembler continues. For information on
st dout , see your host system manual.

To display the message without assembling, usev960. After displaying
the message, the assembler stops.

The message includes the assembler version number and the assembler
creation date and time.

Example

The following shows a sample version message:
$ gas960e nyprog. asm -v960

Intel 80960 ELF Assenbler, 6.0.6002, Thu Sep 26 23:25:43
MST 1997

Option Reference I

W: Warnings

Suppress the warning
messages

w

Discussion

To suppress the warning messages, use W The error messages continue to
appear on st der r . For information about the message formats, see
Chapter 6. For information on st der r, See your host system manual.

x: Allow mixed architectures

Allow architecture
mismatches

Discussion

Using the x option causes the assembler to generate warnings (not errors)
when it encounters mixed architectures (e.g., opcode not in target
architecture).

4-21

i960® Processor Assembler User's Guide

4-22

Example
The following shows how using the x command-line switch affects the
assembler’s treatment of architecture-specific instruction mismatches:
$ cat myprog.s
xnor r5r6,r8
st r8,r10(gl0)[g4*4]
$ gas960e nyprog.s -ARP
myprog.s:1: Opcode is not in target architecture: “xnor”.
myprog.s:2: indexed addressing mode not available
$ Is myprog.o
Is: myprog.o: No such file or directory
$ gas960e myprog.s -ARP -x
myprog.s:1: Warning: Opcode is not in target architecture: “xnor”.
myprog.s:2: Warning: indexed addressing mode not available
$ Is myprog.o
myprog.o
$

Option Reference

z: Time stamp

Suppress the time stamp
in the COFF output file

Discussion

The assembler puts the current time and date in the file header of the COFF
output file. On most UNIX systems, to put Time Zero in place of the
current time stamp, specify z. Time Zero is 4:00, 31 December, 1969.

The z option has no effect on b.out or ELF format output.

Example

The following command specifies Time Zero for the time stamp:
gas960e -z filel.s

4-23

Directives

Table 5-1

This chapter describes how to use the assembler directivesin your source
text. The Directives Reference section, which begins on page 5-10,
provides an encyclopedia of the directives.

Functions Performed by Directives

Category
input-specification

location-counter
control

data and memory
initialization

symbol and debugger-
support

optimization

Function

specify how the assembler
finds and reads input and
controls conditional
assembly.

change the location
counter and specify
program sectioning.

assemble data in integer,
ordinal, and real formats
and initialize strings and

memory blocks.

define symbols and
provide source and
symbolic information for
debugging.

optimize memory
addressing and procedure
calls.

Directives

.if, .else, .endif, .ifdef,
.ifndef, .ifnotdef, .include

.align, .bss, .data, .org,
.section, .text

.ascii, .asciz, .byte,
.double, .extended, .fill,
float, .single, .int, .long,
.word, .short, .hword,
.space

.comm, .def, .endef,
.desc, .elf_size,
.elf_type, .equ, .global,
.globl, .set, .Isym, file,
.lcomm, .line, .In, .stabd,
.stabn, .stabs, .scl, .size,

.tag, .type, .val
leafproc, .lomem,
.sysproc

continued [J

51

i960® Processor Assembler User's Guide

5-2

Table 5-1

Functions Performed by Directives (continued)

Syntax

Category Function Directives
identification identifies the assembly. .ident

abort stops the assembly. ABORT
position-independence mark object files as .pic, .pid, .link_pix

position-independent.
listing control listing behavior. Jlist, .nolist, .title, .eject

NOTE. To assemble directives relevant for COFF devel opment, invoke
the assembler asasn®60 or gas960c. For directivesrelevant for b.out-
format devel opment, use gas960. For directivesrelevant to ELF
development, use gas960e.

For the directivesin your source text, use the following syntax:

. hanme arg_string

namne isthe directive keyword. Theleading dot (.) is
required.
arg_string iS zero or more arguments, according to the

reguirements of the directive.

Directives

Specifying the Input

When invoking the assembler, you must specify a source file on the
command line, as described in Chapter 3. For additional source text, you
can include the contents of other fileswith the . i ncl ude directive. The
assembler inserts the included source text in place of the.. i ncl ude line.

Y ou can specify blocks of source text to be assembled or ignored based on
conditions determined during assembly. To delimit text for conditional
assembly based on expression evaluations, usethe. i f, . el se, and

.endi f directives. To delimit text for conditional assembly based on
symbol definitions, usethe. i f def,.ifndef,and.ifnotdef directives.
These directives are especially useful when used in combination with the D
option (described in Chapter 4).

Controlling the Location Counter

The assembler uses the location counter to determine the address of each
instruction or dataitem. The location counter begins at zero and increases
by one for each byte assembled. A dot (.) symbolically represents the
location counter.

Setting the Location Counter to a Specific Value
To manipulate the location counter directly:

.align increments the location counter to the next
address boundary fitting the alignment factor.
Also stores the largest alignment found per
section into the output file for later use by the

linker.

.org sets the location counter to the address you
specify.

. (dot) is the location-counter symbol for expressions

and assignments.

i960® Processor Assembler User's Guide

To align dataand instructions, use.. al i gn. The assembler starts the next
instruction or dataitem on an address that fits the specified alignment,
padding the intervening bytes with zeros or with avalue you provide.

To set the location counter to a specific address, use . or g or an assignment
statement. The assembler gives the location counter the value you provide.
Y ou can express the new address in terms of the current location counter,
represented by the dot (.). For example, the following advances the
location counter by four bytes:

.org . + 4

The following example uses the location counter (.) as an operand
behaving just like alocal labdl:

lda ., g5
lda . - 4, ¢gb
lda . + 6, g7

alab: b blab
bl ab: cnpojne 0, 0, alab

lda . - alab, g6
. set symmane, . - alab
.data
.word .
.word . + 4
.word . - 16

Moving the Location Counter to a Section

In COFF and ELF programs, you can define multiple sections of
executable code (text-type sections), initialized data (data-type sections), or
uninitialized data (bss-type sections). In b.out-format programs, you can
defineone . bss section, one. t ext text-type section, and one . dat a data-
type section. For more information on section types and object-file
formats, see the utilities user’s guide.

Directives

Y ou can start anew section or continue a previous section at any point in
your source text with the section directives:

. text puts executable code into a section named . t ext .
.data putsinitialized datainto a section named . dat a.
. bss puts uninitialized data into a section named . bss.
.section for COFF and ELF programs only, puts

executable code, initialized data, or uninitialized
datainto a section that you name.

COFF and ELF programs contain three or more sections; b.out-format
programs contain exactly three sections. All object files contain at least the
standard . t ext , . dat a, and . bss sections.

The order of sectionsin any program and the names and number of
sectionsin a COFF or ELF program depend on the section definitionsin
your source text. Omitting the. t ext , . dat a, or . bss section directives
creates the standard sections with zero size.

The first section directive creates the section and points the location
counter to the beginning of the section. Later in the program, you can
append text or data to existing sections with additional . t ext , . dat a, or
. bss section directives or (for COFF and ELF programs) with additional
. sect i on directives specifying the same section names.

Initializing Data

To define datain memory, use the data-initialization directives according
to the size of the memory block to be initialized and the data format:

¢ asingle memory location with byte, ordinal or integer data

e asingle memory location with real datatypes

e amemory block with string data

» amemory block with specified values or zeros

i960® Processor Assembler User's Guide

Initializing Byte, Ordinal, and Integer Data
Toinitialize datain byte, ordinal, and integer formats, use:

.byte for byte-aligned data (8 bits or shorter).
.short, . hword for half-word-aligned data (16 bits or shorter).
.int,.long,.word for word-aligned data (32 bits or shorter).

Y ou can specify abit field of up to 32 bits with arguments to the byte-
initialization, half-word initialization, and word-initialization directives.
For more information, see the Directives Reference on page 4-10.
Initializing Floating-point Data

Toinitialize datain real or floating-point formats, use:

.float,.single for 32-bit real data.
. doubl e for 64-bit real data.
. ext ended for 80-bit real data (stored in 12 bytes).

How the processor treats real data depends on whether floating-point
instructions are supported. The KB and SB include on-chip floating-point
support and can use the accelerated floating-point (AFP-960) library. The
other 1960 processors emulate floating-point arithmetic in software.

For more information on floating-point support, see the AFP-960 library
supplement and the processor handbooks.

Initializing String Data

To define character strings, use:

.ascii for astring.

.asci z for anull-terminated string.

For information on characters and escape sequences allowed in character
strings, see Chapter 7.

Directives

To terminate the string with a null character (ASCII 0), for C language
compatibility, usethe. asci z directive. Using . ascii does not append a
null character.

You can use . byt e with a set of character constantsin place of . asci i .
For example, the following assemble the same data:

.ascii "cat" # assenble an ascii string
.byte "c’, 'a', 't’' # assenble 3 ascii bytes
Initializing Blocks of Memory

To put arepeated value into a block of memory, use:
il fillsthe block with a value you specify.

. space fills the block with zeros.

Defining Symbols

To define symbols, use:

. gl obl, . gl obal for global symbolsin the object-file symbol table.

. comm for common symbols in the object-file symbol
table.

.1 comm for local common symbols.

.set,.equ,.lsym for non-rel ocatable symbols.

Y ou can make a symbol external implicitly. Using a symbol without
defining it adds it to the symbol table as an undefined external symbol.
The symbol type and other symbolic information are derived from the
context in which you use the symbol.

The assembler uses an internal symbol table that is not retained in the
object file. To define and initialize non-relocatable symbols for the
internal symbol table, usethe. set, . equ, or . | symdirectives.

i960® Processor Assembler User's Guide

5-8

With the optimization and debugging directives, you need use no
additional symbol-definition directives. For more information on
debugging and optimizing, see the Providing Debugger Information
(page 4-8) section and the Optimizing section (page 4-9).

Providing Debugger Information

For COFF debugging, the compiler puts the following directivesin the

assembly outpult:
. def

.dim

. endef

.line

.In

.scl
. Size
.tag

.type

.val

begins a symbol definition.
specifies the array dimensions.
ends a symbol definition.

sets aline number.

specifies aline number and the associated
address.

declares a storage class.
specifies the symbol size.
specifies an associated tag.
declares a symbol type.

declares the symbol value.

For b.out-format debugging, the compiler puts the following directivesin

the assembly outpuit:
. desc

.Isym

. st abd

sets the symbol descriptor.

creates and initializes a debugging symbol with
no additional symbolic information.

creates a debugging symbol for the location
counter.

5

L)

Directives

. st abn creates and initializes a debugging symbol named
the empty string (" ").

. st abs creates and initializes a debugging symbol with

al possible symbolic information.

For EL F-format symbol table embellishment, the compiler puts the
following directives in the assembly outpult:

.el f_size sets the size of the symbol to the given quantity.

.elf_type sets the EL F type of the symbol to the given type.

NOTE. For ELF-format object files, the compiler provides debugging
information in DWARF format in separate sections. See the 80960
Embedded ABI (Intel order #631999) for more information on DWARF
format.

For more information on the symbol table, see the i960® Processor
Software Utilities User's Guide

Optimizing

To optimize leaf and system procedures, use:

.1 eaf proc identifies a procedure for branch-and-link
optimization.

. Sysproc identifies a procedure for system-call
optimization.

5-9

5 i960® Processor Assembler User's Guide

Marking Position Independence

To mark object files as position-independent, use:

.pic indicates position-independent code.
. pid indicates position-independent data.
i nk_pi x indicates a position-dependent file intended for

linking with position-independent code or data.

Controlling the Listing

When you request alisting, with the L command-line option, you can use
these directives in the source text:

.nol i st turn off listing until thenext . 1 i st directive.
st turn listing on again after a. nol i st .
Jtitle specify thelisting title.

. ej ect add aform feed to the listing.

Directives Reference

This section describes the assembly directives aphabetically.

ABORT

Abort the assembly

. ABORT

Discussion

Use. ABORT to stop assembly immediately, suppressing the object file.

5-10

Directives

Example

If MAX_ERRS is defined, assembly stops at the . ABORT line:

.i fdef MAX_ERRS
. ABORT
.endif

align

Align the location

counter

.align align_expr [, data_expr]

al i gn_expr specifies the location-counter alignment. This
expression is non-relocatable, non-negative, and
evaluatesto 31 or less.

dat a_expr optionally specifies a byte value for filling bytes
between the old and new |ocation-counter
addresses.

Discussion

To align the location counter on byte, word, double-word, or quad-word
boundaries, use . al i gn. The assembler does the following:

. Igcrements the location counter to the next value evenly divisible by
27

« Putsdata_expr in any unused bytes between the previous and newly
aligned location-counter values. Omitting data_expr fillsthe
intervening bytes with zeros.

e The align directive also updates the output section’s alignment field in
the section header to be the largest alignment per section. This field is
used by the linker to enforce alignments of input sections.

5-11

i960® Processor Assembler User's Guide

¢ When not specified, the default alignments for the following OMFs are

asfollows:
b.out COFF ELF
text 2 W 2
.data 0 0, 2
.bss 0 40 4
.section text NA 0, 2
.section data NA 0, 2
.section bss NA 4 4

0@
(1) The COFF assembler emits sections that are multiples of at least 32-bit words. Therefore the
smallest default alignment is 2.
(2) The smallest alignment for bss sections in COFF is 4. Anything less is ignored.

Example

The following sets the location counter to 14 hexadecimal and increments
it to 18 hexadecimal, the next address evenly divisible by 8 (23). The bytes
between 0x14 and 0x18 arefilled with zeros.

.org Ox14
.align 3

.ascii, .asciz

Assemble ASCI| string
data

.ascii "string"
.asciz "string"

string isthe character string to assemble. The quotation
marks are required.

5-12

Directives 5

Discussion

To define acharacter string, use. ascii or. asci z. Thefirst character
occupies the address indicated by the location counter. Successive
characters occupy sequential byte locations.

The. asci z directive ends the string with anull character; asci i does not.

Use abackdash (\) for special characters, as described in Chapter 7.

Examples

1. Thefollowing example assembles a string without a null end (13 bytes
of information are assembled).

.ascii "Nane\tAddress\n"

2. Thefollowing example assembles the same string with anull end
(14 bytes of information are assembled).

.asci z "Nane\t Addr ess\ n"

.bss

I dentify a symbol for
uninitialized data
storage

. bss nane, size expr, align_expr

name is the symbol name.
size_expr specifies a non-negative symbol size, in bytes.
al i gn_expr alignsthe symbol. Thisexpressionisnon-

relocatable, non-negative, and evaluatesto 31 or
less. The assembler assumes a zero aignment if
you specify a negative alignment.

5-13

i960® Processor Assembler User's Guide

Discussion

To create uninitialized symbols, use. bss. The nane appearsin the
symbol table. The assembler extendsthe . bss section by reserving

si ze_expr bytes, aligned on the next address evenly divisible by
2align_expr Y ou can create any number of sections of uninitialized data
in a COFF or ELF program. (Use. secti on nane, bss to create another
one). You can use any humber of . bss directivesto extend the . bss
section.

For programs with no uninitialized data, the assembler insertsa. bss
section of zero size.

Example

The following example, with the location counter starting at 0x 14, defines
an uninitialized-data symbol named buf f er at 0x18, which is the next
boundary evenly divisible by 8 (2°). The assembler reserves 256 words
(4 bytes each) inthe . bss section.

.org Ox14
.bss buffer, 256 * 4, 3

Related Topic

.section
.byte
Assemble byte data
.byte [int_expr:]data expr [, ...]
i nt_expr is the number of bits (up to 8) to reserve for the
data.
dat a_expr isthe byte value to assemble.

5-14

Directives 5

Discussion

To define byte or bit-field data, use. byt e. Thefirst byte or bit field is
byte-aligned on the address indicated by the location counter. Successive
bytes and hit fields occupy sequential locations and do not cross byte
boundaries.

Each dat a_expr must evaluate to an eight-bit (one-byte) or shorter value.
For abit field shorter than eight bits, specify i nt _expr. The assembler
truncates dat a_expr to i nt_expr number of bits. When the bit field
cannot fit into the current byte, the assembler pads the current byte with
zeros and aligns the bit field on the next eight-bit boundary.

Examples

1. Thefollowing allocates three bit fields from the least-significant to the
most-significant bit within the byte. No bit field is alocated to the bits
marked z, which contain zeros. Thefirst byteisallocated at the
address contained in the program counter (pc); the second byteis at the
subsequent address (pc + 1).

.byte 3:1,2:1,5:1

bit number: 7 6 5 4 3 2 1 0
pc z z z 0 1 0 0
pc+1 z z z 0 0 0 0 1

Assembling for a big-endian target with the G option (see Chapter 4)
allocates the bit fields from the most-significant to the least-significant
bit within the byte:

bit number: 7 6 5 4 3 2 1 0

pc 0
pc+1 0 0 0 0 1 z z z

o
[
o
[
N
N
N

2. Thefollowing assembles three characters:
.byte 'a',’b’,’'c’

5-15

i960® Processor Assembler User's Guide

.Lcomm

Declare a common
symbol

.comm nane, data_expr [, elf_conmm alignment]
name isthe symbol name.
dat a_expr specifies a non-negative symbol size, in bytes.

el f_conm al i gnment In ELF, you can optionally specify the alignment
of common symbols.

Discussion

To use acommon symbol in more than one module, add the symbol to the
object-file symbol table with . corm Specify the size of the symbol in
bytes with the dat a_expr argument. The assembler creates the symbol as
an undefined external type. The linker resolves any references to the
symbol from other modules.

The default alignment of acommon symbol is determined by the log
(base 2) of the size of the symbol:

Size Default Alignment
0,1 0
2 1
34 2
5,6,7,8 3
>=9 4

When you include a alignment expression, you override the default
behavior. The alignment expression is useable only in the ELF assembler.

5-16

Directives

Examples

The following directives define three common symbols. _a occupies four
bytes, _b occupies two bytes, and _c occupies one byte.

.comm _a, 4

.comm _b, 2

.comm _c, 1

Another example: you have atable of 100 characters, and 100 shorts, and
100 words. You are using the ELF assembler and RAM space is critical so
you align them manually:

.comm chars, 100, 0

.comm shorts, 200, 1
. comm wor ds, 400, 2

.data

Create or extend a data-

type section
.data
Discussion

Toinitialize variables, use . dat a. When a. dat a section already exists,
this directive sets the location counter to the end of that section.

Omitting . dat a insertsa. dat a section of zero size.

Example

The following lines resume or begin the data section of a program:

.data
.word O
. doubl e 0d2. 5e10

5-17

5

i960® Processor Assembler User's Guide

5-18

Related Topics

. bss
.section
.text

.def, .endef

Provide symbolic
information for COFF

. def nane

namne is the symbol to be described.

Discussion

When you compile a high-level language program for COFF symbolic
debugging, the compiler puts symbol descriptions in the assembly output.
Such descriptions start with . def and end with . endef .

Example

Thefollowing is C language source text:

mai n() {

int a;
}
The compiler produces the following symbol description for the debugger.
The _a automatic variable appears on the stack 0x40 bytes from the integer
frame pointer.

.def _a; .val 0x40; .scl 1; .type O0x4; .endef

Directives

Related Topics

.dim .size .val
.line .tag
. scl .type
.desc
Set the symbol
descriptor for b.out-
format debugging
.desc nane, abs_expr
namne is the symbol name.
abs_expr evaluates to anon-rel ocatable value.
Discussion
Compiling a high-level program for b.out-format symbolic debugging adds
. desc symbol descriptors as the low-order 16 bits of abs_expr .
dim

Declare the dimensions
of an array for COFF
debugging

.dimsize_expr [,size_expr [,size_expr [,size_expr]]]

si ze_expr evaluatesto a positive integer for an array

dimension.

5-19

i960® Processor Assembler User's Guide

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) for any arraysin the assembly output. The. di mdirectives
specify up to four dimensions for each array.

Related Topics

. def , . endef .size .val
.line .tag
. scl .type

.double

Assemble double-

precision (64-hit)
floating-point values

. doubl e doubl e_const [, double_const]

doubl e_const is anon-relocatable 64-bit floating-point
constant, or one of the following:

nan Or gnan generates a quiet nan value

snan generates asignalling nan value

+i nf generates positive infinity

-i nf generates negative infinity

Discussion

To define double-precision floating-point data, use . doubl e. Thefirst
value occupies the address indicated by the location counter. Successive
values appear in sequential locations. To align the data on particular
address boundaries, usethe. al i gn directive.

5-20

Directives

To ensure correct double-precision floating-point evaluation, precede each
literal value in the expression with 0d.

Example

The following line assembles the 64-bit value 3. 14159:
. doubl e 0d3. 14159

Related Topic

.float .extended

.eject

Put a page break into
thelisting

. ej ect

Discussion
Use this directive in the source text to insert a page break (formfeed
character) in the listing.

Related Topics

i st .nol i st
.title

521

i960® Processor Assembler User's Guide

5-22

.elf_size

Adds the given sizeto
the named ELF symbol

.elf_size nane, size_expr

Discussion

The. el f _si ze directive applies only to the ELF assembler. This
directive adds the given size to the ELF symbol table. Y ou can view the
ELF symbol table with the dumper/ disassembler (use[g] dmp960 -t).
Thisinformation is not used in DWARF.

Example

. text

f oo:

| da 0, g0

ret

Lendf oo:

.elf_size foo, Lendfoo - foo

Related Topic
.elf_type

Directives

elf_type

Adds the given type to
the named ELF symbol
table entry

.elf_type nane,{ function | object }

Discussion

The. el f _t ype directive applies only to the ELF assembler. This
directive adds the given type to the ELF symbol table entry. Y ou can
view the ELF symbol table with the dumper/ disassembler (use

[9] dmp960 -t). Thisinformation isnot used in DWAREF.

Example

. text

f oo:

| da 0, g0

ret

Lendf oo:

.elf_size foo, Lendfoo - foo
.elf_type foo, function

Related Topic

.elf_size

.else
See if

5-23

5 i960® Processor Assembler User's Guide

.endef
See .def

.endif
See if

.equ, .Isym, .set

Set the value of a symbol

Jequ]

O syn(] nane, data_expr

[set []

name isthe symbol name.

dat a_expr evaluates to a constant during assembly and is
assigned to the symbol. The expression must be
non-relocatable.

Discussion

To assign anew valueto asymbol, use. equ, . | sym or . set. Thevalue
you specify defines or redefines the symbol type.

Y ou may use the same nane in more than one . set set per assembly.

A symbol defined with . equ, . | sym or . set does not appear in the
symbol table unless the assembler findsa. gl obal for the symbol name.

5-24

Directives !Eii)

Examples

1. Thefollowing defines an integer symbol named usef ul with an initial
valueof 3:
.equ useful, 3

2. Thefollowing defines aglobal symbol named x, then specifiesx as an
integer with an initial value of 1:

. gl obal x
.set x, 1

3. Thefollowing sets the temporary symbol xbase to 10 and then to 24:

. sym xbase, 10
.I'symy, xbase
. sym xbase, (2*y)+4

.extended
Assembl e extended-
precision (80-bit)
floating-point data

.extended float_expr [, float_expr]...

float_expr is the 80-bit floating-point value to assemble, or
one of the following:

nan Or gnan generates aquiet nan value

snan generates asignalling nan value

+i nf generates positive infinity

-i nf generates negative infinity

5-25

5 i960® Processor Assembler User's Guide

Discussion

To define extended-precision floating-point data, use . ext ended. Thefirst
value occupies the address indicated by the location counter. Successive
values appear in sequential locations. To align the data on particular
address boundaries, usethe. al i gn directive.

To simplify addressing, the 80-bit floating-point data items defined with
. ext ended occupy 12 bytes (96 hits) instead of 10 bytes. The additional
two bytes are padded with zeros.

Example

The following line assembles the 80-bit value 3. 14159:
.extended 3.14159

Related Topics

. doubl e
.fl oat

file
I dentify the source file

.file "string"

string is a source filename, without a pathname. The
quotation marks are required.

Discussion

When you compile a high-level language program, the compiler puts a
. fil e directivein the assembly source output to identify the primary
high-level language source filename. Source debuggersusethe.fil e
information to identify the original C source filein b.out and COFF.

5-26

Directives

Source debuggers using ELF/DWARF obtain source file information
from DWARF. However, in ELF, the. fi I e directive modifiesthe ELF
symbol table. Y ou can view the ELF symbol table with the

[g] dnp960 -t command.

Example

The following line identifies the source filename asexanpl e. c:

.file "exanple.c"

fill

Initialize a memory

block

fill int_exp, size_expr, data_expr

int_expr is a non-relocatable expression specifying how
many times to repeat the fill data.

size_expr is a non-relocatable expression specifying the
size, in bytes, of the fill data (up to eight bytes).

dat a_expr is a non-rel ocatable expression specifying the fill
data. Thisexpression must evaluate to abyte
value.

Discussion

To initialize amemory block with arepeated value, use. fil | . The

assembler puts dat a_expr into memory i nt _expr times, beginning at the
current location counter. The memory block occupies (i nt _expr *
si ze_expr) bytes.

To align the memory block on a particular address boundary, use the
.al i gn directive.

5-27

i960® Processor Assembler User's Guide

Specify the size of dat a_expr with si ze_expr, up to eight bytes. When
si ze_expr islarger than needed by dat a_expr, the excess high-order
bytes contain zeros.

Examples

1. Thefollowing exampleinitializes amemory block of 16 words, filling
each word with 0x0f (decimal 15).

fill 16, 4, 2*8-1

2. The.fill and. space directivesare similar. Thefollowing lines
have identical effects, initializing 4 bytes with the value 1 in each byte:

il 4, 1, 1
.space 4, 1

Related Topic

. space

float, .single
Assemble
single-precision (32-bit)
floating-point data

Hfloat Hyvar_const [, float_const]

Ll singl el

float_const isa 32-bit floating-point value to be assembl ed,
or one of the following:

nan Or gnan generates a quiet nan value

5-28

Directives

snan generates asignalling nan value
+i nf generates positive infinity

-i nf generates negative infinity
Discussion

To define single-precision floating-point data, use . f1 oat or . si ngl e.
Thefirst value occupies the address indicated by the location counter.
Successive values appear in sequential locations. To align the data on
particular address boundaries, use the. al i gn directive.

Examples

1. Thefollowing line assembles the 32-bit value 3. 14159:
.float 3.14159

2. The.float and. si ngl e directives haveidentical effects. The
following lines assemble the 32-bit value 3. 14159 twice:

.float 3.14159
.single 3.14159

Related Topics

. doubl e
. ext ended

.global, .globl

Declare a global symbol

. gl obal nane
. gl obl nane

namne is the name of the external symbol.

5-29

i960® Processor Assembler User's Guide

Discussion

To make the defined symbol name an external symbol, use. gl obl or
. gl obal . Thelinker resolves any references to the symbol from other

modules.

Example
The following example makes the label _exi t agloba symbol:

.globl _exit

.hword
See .short

ddent

Include identification,
date, and timein the
object file

.ident ident_str[, tine_value]
i dent_str identifies the compiler.

time_val ue isthe time value returned by thet i me function.

5-30

5

Directives

Discussion

To put compiler information in the symbol table, usethe. i dent directive
and the 1 9601 DENT environment variable. Add an identification string
with i dent _st r. Put a specific time and date in the symbol table with
time_val ue. Omitting t i me_val ue puts the assembly time and datein

the symbol table.

Assembly language output from the compiler includesa. i dent line.

Example

The following identifies the compiler at 10:20, 13 November, 1991:
.ident "iC960 V4.0X, 0x29216cde"

Af, .ifdef, .ifndef, .ifnotdef, .else, .endif

I dentify blocks of source
text for conditional
assembly

if cond_expr D

ifdef] _
[E i fndef [Bymbol Dstm_b/ ock [.else stnt_block] .endif
[0 fnotdef O
cond_expr evauates to a non-rel ocatable constant during

assembly. The condition is false when
cond_expr is zero and true otherwise.

symbol isasymbol name.
stnt_bl ock isablock of one or more assembly statements.

5-31

i960® Processor Assembler User's Guide

5-32

Discussion

To conditionally assemble a block of source text, begin the block with . i f,
.ifdef,.ifndef,or.ifnotdef andendtheblock with. endi f. The
assembler selects the block to assembl e as follows:

with i f when cond_expr iSnon-zero

with . i f def when synbol is defined

with . i f ndef when synbol is not defined

or.ifnotdef

with . el se when the preceding . i f, . i fdef,.ifndef, or

.ifnotdef block is not selected

The. el se directiveendsan .if,.ifdef,.ifndef,or.ifnotdef block
and the . endi f directive ends any conditional-assembly block. Y ou can
nest conditional-assembly blocks.

These directives are best used in combination with the D option (described
in Chapter 4).

Example

The following code assembles a double-precision floating-point value
when UseDoubl e is nonzero and a single-precision floating-point value
otherwise:

.if UseDoubl e

. doubl e 3.14159
.el se

.float 3.14159
.endi f

Directives

.nclude
Insert source text from a
file
.include "filenane"
filename istheinclude filename. The quotation marks are
required.
Discussion

To insert source text from afile, usethe. i ncl ude directive. The contents
of theincluded file are assembled in place of the . i ncl ude statement.

To include afile from elsewhere than the current directory, you can:

» provide the complete pathname for thefile

e usethel option (described in Chapter 4)

» definethel 9601 NC or 3601 NC environment variable (described in
Chapter 3).

Example

The following includes the source filesgen_d. asmand gen_e. asmin the
st di n input:

asm60 -i

.equ UseDouble, 1
.include "gen_d. asn{
.ifdef D_ERR

. ABORT

.endif

.include "gen_e. asnf
~d

5-33

i960® Processor Assembler User's Guide

5-34

int
See .word

dcomm

Declare alocal common
symbol

.l conm synbol, size_expr

synbol names the symbol.
si ze_expr evaluates to the length, in bytes, of the symbol.
Discussion

To declare alocal common symbol, usethe. | commdirective. The
assembler alocates spacein the . bss (uninitialized-data) section for the
symbol. The symbol appears in the symbol table as static.

Example

The following declares a 4-byte (1-word) local common symbol named
nmyconi

.l conm nycom 4

Directives 5

Jleafproc
Declare a leaf
procedure
.l eaf proc nane[, bal_entr]
nane isthe leaf procedure name, as used in the high-
level-language procedure reference.
bal _entry is the branch-and-link entry-point label.
Discussion

Y ou can optimize some procedure calls by substituting branch-and-link
(bal or bal x) instructionsfor call (cal | or cal | x) instructions. |dentify
such procedures with . | eaf proc. Specify the call entry point with nane
and the branch-and-link entry point with bal _ent ry.

A leaf procedure must meet the following requirements:

» The procedure must use registers minimally. Available registers are
g0 through g7 for the first eight words of an argument list, g8 through
011 for an additional four words, and g13.

e Theprocedure can call no other procedures.

» The procedure can have no stack reguirements, because no stack frame
isalocated for leaf procedures.

e The procedure can have no argument block because register g14
contains the calling-procedure return address.

e The procedure cannot accept a variable argument list.

A leaf procedure has two entry points. The entry point for call instructions
must provide areturn sequence (prolog and epilog). The entry point for
branch-and-link instructions must skip the return sequence.

5-35

i960® Processor Assembler User's Guide

5-36

When you compile a high-level language program for leaf-procedure
optimization, the compiler identifies the leaf procedures, inserts the

. 1 eaf proc directives, and generates the calling-convention blocks. For
the call entry point, the compiler adds a single underscore (_) to the
beginning of the procedure name. For the branch-and-link entry point, the
compiler appends the suffix . I f.

If you don't specify a branch-and-link entry point, the assembler assumes
that the branch-and-link entry point and the name entry point are the same.

Example
Compiling the following C source code produces the _add entry point:
int add(a, b)
int a,b;
{
return(a+b);
}
The resulting assembly codeis:
.align 4
.def _add; .val _add; .scl 108; .type 0x44; .endef
.globl _add
.leafproc _add, add.|f
_add:
lda LR2, g14
add. | f:
mov gl4, g7
addi g0, g1, gO
mov 0, gl4
bx (g7)
LR2 ret
In 3
.def _add; .val .; .scl -1; .endef

The. scl 108 storage-class indicates an external leaf procedure. The _add
isthe call entry point. Theadd. | f isthe branch-and-link entry point.

Since this example is compiled for source debugging, the compiler adds
the. def directives.

Directives
line
I dentify the line number
of a COFF debugging
symbol
.line int_expr
i nt_expr evaluates to a positive integer to be used asaline
number.
Discussion
Compiling for COFF source debugging puts. | i ne directivesin the
symbol definitions (. def , . endef pairs). Thei nt_expr istheline
number for the line defining the symbol declared inthe . def block.
Related Topics
. def .In
. endef
dink_pix
See .pic

5-37

i960® Processor Assembler User's Guide

list

Re-enable listing after a

.nolist
i st
Discussion
Listing resumes on the instruction or directive immediately following this
directive. Thisoption is useful in combination with . nol i st when you
want to list only part of the source text.
Related Topics
.nol i st .title
. ej ect

n

Secify a line number
within a function

.In int_expr [, addr_expr]

i nt_expr evauatesto a positive integer to be used asaline
number.

addr_expr isthe address of aline.

5-38

Directives

Discussion

Compiling for source debugging puts. | n directivesin the source text to
reset the source line numbers relative to the beginning of functions.

The assembler numbers the line containing the . | n directiveasi nt _expr
and the subsequent line as (i nt _expr +1). Omitting addr _expr usesthe
location counter (.).

The. | n directive appears outside of any debugging symbol definition
(. def , . endef pair).

Example

The following specifies line number 10 for the current position of the
location counter:

.In 10,

Related Topic

.line

Jomem

Generate short memory-
access instructions

.l omem nane

namne identifies a symbol.

5-39

i960® Processor Assembler User's Guide

Discussion

This directive identifies a symbol’s address as falling within the range

0 - Oxfff. This is the range of addresses that can be reached with the
absolute offset of a MEMA format instruction. The assembler uses
MEMA format for all MEM format instructions that reference the symbol.
This yields a space savings of 4 bytes per instruction over MEMB format.

The symbol’s | onemdeclaration must appear before the first use of the
symbol in a MEM format instruction. Otherwise the assembler defaults to
MEMB format.

To declare an entire section’s symbols “lomem” use themattribute to
the secti on directive.

Example

The following example declares the symbeb to be “lomem” and then
loads its contents into a register. Thieinstruction that follows is 4 bytes
long.

f oo:
.lomem foo
Ild foo, r4

Related Topic

.section

long
See .word

Directives

dsym

See .equ

.nolist

Turn listing off
.nol i st
Discussion
Listing stopsimmediately, and does not resume again until a. | i st
directiveis seen. Thisoption isuseful in combination with . 1 i st when
you want to list only part of the source text. The assembler ignores this
directive when you use the La option on the command line.
Related Topics
.list .title
. ej ect

.0rg

et the location counter

.org addr_expr[, abs_expr]

addr _expr isan integer expression.
abs_expr isanon-relocatable byte value to be used as afill
value.

5-41

5 i960® Processor Assembler User's Guide

Discussion

To point the location counter to a specific address, relative to the start of
the current segment, use. or g. Specify the new address with addr_expr .
The assembler puts zeros in the bytes between the old and new addresses.
Y ou can specify avalue other than zero with abs_expr .

The assembler does not issue awarning for large addr _expr values. Note
that such use can fill up ahard disk quickly.

Example

The following example advances the location counter (.) by four bytes:

.org . +4

Related Topics

.align .section
. bss . text
.data

pic, .pid, .link_pix
Mark the object file as
compatible with
position-independent

modules

O link_pix[]
Lpic 0
[l pid U

5-42

Directives

Discussion

For position-independent programs, you must ensure consistent position
independence of the object code and data across the object files. The
linker examines each object file header and issues warning messages for
mismatches. To suppress the warning messages, put one of the following
directives at the beginning of your source text:

.pic indicates afile containing position-independent
code.

. pid indicates afile containing position-independent
data.

i nk_pi x indicates compatibility with position-independent

code, data, or both.

For more information on position independence, see your compiler manual.

.scl

Declare the storage
classfor COFF
symbolic debugging

.scl int_expr

i nt_expr evaluatesto a positive integer indicating the
storage class.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) in the assembly output. The. scl directives specify the
storage class for each symbol so described.

i960® Processor Assembler User's Guide

Example

The following example specifies the 113 storage class, indicating a static
leaf procedure, for the add procedure:

.def _add; .val _add; .scl 113; .type 0x44; .endef;

Related Topics

. def .line .type
.dim .size .val
. endef .tag

.section

Creates or extends a
COFF or ELF program
section

.section nane, [, attribute_list]

name identifies the section.

attribute_|ist identifies the attribute(s) associated with this
section.

Discussion

To create or extend a program section that you name, use . sect i on.
When the named section already exists, . sect i on sets the location counter
to the end of the named section. Y ou can create multiple sections of
instructions (text-type) or initialized data (data-type) or uninitialized data
(bss-type) in a COFF or ELF program but not in a b.out-format program.

Directives

Y ou can have any number of attributes for any given section. Attributes
can be duplicated. An empty attribute list is allowed and means the section
does not have any of the attributes. The attributes apply to both COFF and
ELF unless otherwise indicated. If a COFF-only attribute is given to the
ELF assembler, it is silently ignored and vice versa.

The attributes and their effects are:

al l oc The section should cause the linker to allocate
memory (e.g., DWARF sections are not allocated).

bss The named section takes on the same attributes as
the .bss section.

dat a The named section takes on the same attributes as
the .data section.

exec The named section contains executable code.

info The section contains information only. (COFF
only)

| omem The named section is intended to be located in low

memory. Referencesto labelsin this section will be
viaMEMA format instructions. (See. | omemfor
more information about MEMA format
instructions.)

msh The section is generated in big-endian byte order.
(ELF only)

pi The named section is position independent. (ELF
only)

read The section contains readable memory. (ELF only)

super _r ead The memory space where the section resides

super _wite correspondsto memory that is readable, writeable,

super _exec or executable when the processor isin supervisor
mode only. (ELF only)

text The named section takes on the same attributes as
the .text section.

wite The section contains writeable memory. (ELF only)

5-45

i960® Processor Assembler User's Guide

Notethat for the super _read, super _write, and super _exec attributes,
the assembler ORs the following bits into the corresponding section header
flag word: SHF_960_SUPER_READ, SHF_960_SUPER W\RI TE,
SHF_960_SUPER_EXECI NSTR. See the 80960 ABI specification (Intel
order #631999) for more information. The linker passes these bits on from
input filesto the output file, ORing al of the flagwords together. The
runtime does not ensure that these semantics are enforced. These bits are
here for convenience, and to let you specify code bound for supervisor
mode.

Example

The following lines begin a data section named sr amthat is bound for low
memory, create another data section named nydat a that is position-
independent, and then continue sr am

.section sram data, |onmem
.globl _a
_a: .space 4

.section nydata, data, pi
.globl b
_b: .word 444

.section sram data
.globl _d
~d: .word 44

Related Topics

. bss .text
.data .l omem

.set
See .equ

Directives 5

.short, .hword
Assembles 16-bit data

[short E . d

5 hwor df [int_expr] data _expr [, ...]

i nt_expr isthe bit-field length, up to 16 bits.
dat a_expr isa 16-bit value to be assembled.
Discussion

To define half-word or short-integer data, use the. short or. hword
directive. Thefirst value occupies the address specified by the location
counter. Successive values occupy sequential two-byte locations. To aign
the data on particular address boundaries, usethe . al i gn directive.

For abit field, specify the number of bitswith i nt _expr. The assembler
truncates the dat a_expr valueto i nt_expr number of bits. When the bit
field cannot fit into the current half-word, the assembler fills the remaining
bits of the current half-word with zeros and begins the bit field on the next
16-bit boundary.

Examples

1. The.short and. hword directives haveidentical effects. The
following assembles two half-words of data:
. hword OxFEFE
.short OxEFEF

2. Thefollowing allocates three bit fields from the least-significant to the
most-significant bit within the half-word. No bit field is allocated to
the bits marked z, which contain zeros. Thefirst half-word is
alocated at the address contained in the program counter (pc); the
second word is at the subsequent address (pc + 2).

.hword 3:3, 6:62, 9:21

5-47

i960® Processor Assembler User's Guide

bit number: 7 6 5 4 3 2 1 0
pc 1 1 1 1 0 0 1 1
pc+1 z z z z z z z 1
pc +2 0 0 0 1 0 1 0 1
pc +3 z z z z z z z 0

Assembling for a big-endian target (with the G option) allocates the bit
fields from the most-significant to the least-significant bit within the

byte:
bit number: 7 6 5 4 3 2 1 0
pc 0 1 1 1 1 1 1 1
pc+1 0 z z z z z z z
pc +2 0 0 0 0 1 0 1 0
pc +3 1 z z z z z z z

Related Topics

.ascii . ext ended .octa

.asciiz .float . quad

.byte .int .single

.doubl e .long .word

.single
See float

Directives !Eii)

.Size

Declarethesizeof a
symbol for COFF
debugging

.size size_expr

size_expr isthe size of asymbol, up to 64 kilobytes (65535
in decimal or OxFFFF in hexadecimal). The
expression must evaluate to a positive integer.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) inthe assembly output. The. si ze directive definesthe size
of asymbol so described. For structures and arrays, . si ze specifiesthe
total extent of the symbol.

Due to COFF limitations, specifying too large a symbol size generates
invalid debug information.

Related Topics

. def .line .type
.dim . scl . val
. endef .tag

5-49

i960® Processor Assembler User's Guide

.space

Initialize a memory
block with byte values

.space size expr[, data_expr]

si ze_expr isthe number of bytesto beinitialized. The
expression must evaluate to a positive integer.

dat a_expr is abyte value to be put repeatedly into the
memory block.

Discussion

To increment the location counter and initialize the intervening bytes, use

. space. Thisdirective advances the location counter by si ze_expr bytes
and fills the bytes between the old and new locations with the dat a_expr
value. Omitting dat a_expr fillstheintervening bytes with zeros.

Examples

1. Thefollowing exampleinitializes 64 bytes with zeros:
.Space 16 * 4

2. The.fill and. space directivesaresimilar. Using. space hasthe
same effect asusing . fi I | with adatasize of 1 byte. The following
lines have identical effects, initializing 4 byteswith thevalue 1 in each
byte:

il 4, 1, 1
.space 4, 1

For more examples, see Chapter 9.

Related Topic
il

5-50

Directives

.Stabd, .stabn, .stabs

Create b.out-format
debugging symbols

.stabd type, other,
.stabn type, other,
.stabs nane, type

nane

val ue

type

ot her

desc

Discussion

desc
desc, val ue
ot her, desc, val ue

isthe new symbol name, with any characters
except \ 000.

isanon-relocatable expression initializing the
symbol.

isanon-relocatable expression for the symbol
type.
isanon-relocatable expression.

isanon-relocatable expression for the symbol
descriptor.

For symbolic debugging, you can create symbols that cannot be referenced
by name during assembly. Such symbols can have the following attributes:

val ue

type

nane

To record the location counter during assembly,
define asymbol with . st abd. For any other
initial value, use . st abn, or . st abs.

Provide the symbol type as the low-order eight
bits of a non-relocatable expression.

Since the symbol hame can contain almost any
character, a debugger can usethisfield for
additional information.

5-51

i960® Processor Assembler User's Guide

ot her The debugger can use this attribute for any
purpose. For . st abd, . st abn, and. st abs,
providetheinitial ot her value asthe low-order
eight bits of a non-relocatable expression.

desc Provide the symbol descriptor as the low-order
16 bits of a non-relocatable expression.

.Sysproc

Declare a system
procedure

. sysproc nane, int_expr
namne is the procedure name.

i nt_expr isthe system-procedure table index. The
expression must evaluate to an integer between
zero and 259, inclusive.

Discussion

To use the 1960 processor system-call feature, identify functions as system
procedures with the . syspr oc directive. Y ou need specify any function as
a system procedure only once in your program.

Assign each system procedure an i nt _expr index number in the system

procedure table, as follows:

« For b.out-format programs, the index must be between 1 and 253,
inclusive.

e For COFF and ELF programs, the index must be between zero and
259, inclusive.

If you don't provide an index number, the assembler assigns the special
index number -1. This number tells the linker to look for the real index
number in another module. Y ou must supply the real index number in at
least one assembly source file or your application will not link.

5-52

Directives !Eii)

For more information on system calls and the system procedure table, see
your processor manual.

Example

The following example specifies _add as a system procedure with an index
of 29:

.align 4

.globl _add

.sysproc _add, 29
_add:

addi g0, g1, go

ret

dn 3

Related Topic

.l eaf proc

tag

Declareatag for a
COFF debugging
symbol

.tag string

string is the symbol name.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) in the assembly output. References from within a symbol-
description block to a previous block usethe . t ag directive. The st ring
isthe name of the symbol defined in the previous block.

5-53

i960® Processor Assembler User's Guide

In a structure or union symbol-description block, the . t ag identifiesa
structure or union defined in a previous block.

Related Topics

. def .line .type
.dim . scl .val
. endef .Size
text
Create or extend a text-
type section
. text
Discussion

To create a program section for instructions, usethe . t ext directive. If a
. text section aready exists, this directive sets the location counter to the
end of that section. Omitting . t ext insertsa. t ext section of zero size.

Example

The following lines resume or begin the . t ext section of a program:

. text
mov r3, r4
| dconst Oxff, g5

Related Topics

. bss .section
.data

5-54

Directives

title
Soecify the listing title

.title "string"

string isthetitle you want to appear in thelisting. The
quotation marks are required.

Discussion

Use this directive anywhere in the source text to specify thelisting title.
Only the first such directive has meaning. This directive isignored when
you aso give the Lt command-line option.

Related Topics

Lli st .nol i st
. ej ect

type

Declare the COFF

debugging-symbol type

.type int_expr

i nt_expr evaluates to a positive integer specifying a COFF
type.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) in the assembly output. The. t ype directive adds type
information to the symbol description.

5-55

i960® Processor Assembler User's Guide

Related Topics

. def .line .tag
.dim . scl .val
. endef .size

.val

Declare a debugger-

symbol value

5-56

.val data_expr

dat a_expr isthe value of the symbol.

Discussion

Compiling for COFF symbolic debugging puts symbol descriptions (. def ,
. endef pairs) in the assembly output. The. val directiveinitializesthe
symbol.

Example

The following example shows . val and other debugging directivesin a
symbol-description block describing the nyf cn function:

nyfcn:
.def myfcn; .val nmyfcn; .scl 2; .type 0x44; .endef

Related Topics

. def .line .tag
.dim . scl .type
. endef .size

Directives 5

.word, .int, .long
Assemble word data

gint [
Clongd[int_expr:]data expr[, ...]
Cword(]

i nt_expr isthe length of the datafield, up to 32 hits.

dat a_expr isthe 32-bit integer value to be assembled.

Discussion

To define word-aligned integer, word, or bit-field data, use. i nt, . | ong,
or.wor d. Thefirst value occupies the address specified by the location
counter. Successive values occupy sequential locations. To align the first
value on a particular address boundary, use the. al i gn directive.

For abit field, specify the number of bitswith i nt _expr. The assembler
truncatesthe dat a_expr valueto i nt _expr number of bits. When the bit
field cannot fit into the current word, the assembiler fills the remaining bits
of the current word with zeros and begins the bit field on the next 32-bit

boundary.

Examples

1. The.int,.long,and. word directives have identical effects:
.int 5
.long 5
.word 5

2. Thefollowing allocates three bit fields from the least-significant to the
most-significant bit within the word. No bit field is alocated to the
bits marked z, which contain zeros. The first word is allocated at the
address contained in the program counter (pc); the second word is at
the subsequent address (pc + 4).

.int 16:1,10:1,8:1

5-57

i960® Processor Assembler User's Guide

bit number:

pc
pc+1

pc +3
pc +4
pc +5
pc +6

7
0
0
pc + 2 0
z
0
z
z
pc+7 z

N N N O N O O o o
N N N O N O O o o
N N N O N O o o A~
N N N ON O O O w
N N N ON O O o N
N N N O o o © o r
N N N P O r O Fr O

Assembling for a big-endian target (with the G option) allocates the bit
fields from the most-significant to the least-significant bit within the

byte:
bit number: 7 6 5 4 3 2 1 0
pc 0 0 0 0 0 0 0 0
pc+1 0 0 0 0 0 0 0 1
pc + 2 0 0 0 0 0 0 0 0
pc +3 0 1 z z z z z z
pc +4 0 0 0 0 0 0 0 1
pc +5 z z z z z z z z
pc +6 z z z z z z z z
pc +7 z z z z z z z z

Related Topics

.ascii . doubl e . hwor d

.asciiz . extended .short

.byte .fl oat .single

5-58

Messages

Assembler error and warning messages appear on st derr as.

source: [n]: nessage
source is the source filename.

n isthe line number of the error, appearing only for
source-assembly errors. File, I/0, and command-
line errors do not have source line numbers.

nmessage isthe text of the message.

Error messages report file-specification or syntax errors during assembly.

In addition to producing a message, the assembler acts on the severity of

the error asfollows:

« For fatal errors, assembly stops. No object file is produced.

« For non-fatal errors, assembly continues to the end of the input, but no
object fileis produced.

« For warnings, assembly continues and an object fileis produced.

Assembly Language

This chapter provides:

e anoverview of assembly language directive and instruction syntax
e adescription of the assembly language elements

» adescription of the assembly language statement syntax

Assembly Language Statement Format

Assembly language source is a sequence of statements separated with
newline characters or semicolons. A valid assembly language statement
follows this syntax:

[1abel] [keyword] [operands]

A keywor d can be any of the following:

Directives affect the assembly, as explained in
Chapter 5.

Instructions specify processor operations.

Pseudo-instructions (also called pseudo operations) are

replaced with machine instructions by
the assembler or linker.

Y ou can write null statements, including empty lines and lines with only a
semicolon. For null statements, the assembler generates no machine code,
alocates no storage, and does not change the location counter.

A statement can contain one or more labels. Place labels before instruction
keywords, as described in the Labels section of this chapter. One or more
operands can follow the keyword, as needed.

7-1

i960® Processor Assembler User's Guide

Lexical elements are the building blocks of assembly language statements,
used to construct labels, keywords, and operands. The lexical elements
supported by the assembler are:

e thecharacter set

* tokens and separators

e identifiers
» constants
* labels

e operators

e expressions
e comments

Character Set

The character set used in assembly language programming is a subset of
the ASCII character set. Table 7-1 shows the valid character set.

Table 7-1 Assembly Language Character Set

Characters Comment
ABCDEFGHIJKLMNOPQRSTUVWXYZ alphabetic, UPPERCASE
abcdefghijkimnopgrstuvwxyz alphabetic, lowercase
0123456789 numbers

characters
+-*1O)[]<>;"."_:?@%&# special characters
\|[%!~~
space tab newlinel delimiters

1 In Windows, a newline is a carriage return-linefeed combination while on UNIX it is a linefeed only.

The assembler is case-sensitive. Y ou can write labels and commentsin
uppercase or lowercase, but referencesto alabel must match the case in the
label definition. For example, the label zz is different from the label zz.
instruction mnemonics and most directives use only lowercase characters.

Assembly Language

Tokens and Separators

The assembler processes statements constructed of tokens and separators.
Assembly language tokens include identifiers (symbols or names),
constants, operators, and keywords.

The keywords are directives, instruction mnemonics, and pseudo-
instructions. Statement syntax depends on the keyword. Directives are
described in Chapter 5. Machine instructions are described in this chapter
briefly, and in greater detail in the processor user's manuals. Pseudo-
instructions are described in Chapter 8.

Separate identifiers or constants with at least one blank space or tab
character. You can also use a blank or tab to separate other tokens such as
operators or keywords. Put no blanks or tabs within tokens.

Identifiers

An identifier is a sequence of alphanumeric characters, including the
underscore_(), dollar sign §), and period.(). The first character in an
identifier must not be numeric. Identifiers can have up to 255 significant
characters.

Constants

There are three kinds of constants: simple, character, and string.

Simple Constants
Simple constants are either numeric or single-character. The digits in
numeric constants are:

0123456789
abcdef
ABCDEF

7-3

i960® Processor Assembler User's Guide

Table 7-2

Digits 0 through 9 represent corresponding numeric values, depending on
the current number base (octal, decimal, or hexadecimal). Thedigitsa, b,
c,d,e,andf areidentical to A, B, C, D, E, and F, representing hexadecimal
values corresponding to the decimal values 10 through 15. Integer and
ordinal constants are 32-bit-wide, two's-complement numbers.

The following types of constants are formed:

octal An octal constant is a sequence of the digitso
through 7 with aleading 0. For example, 012
represents decimal 10.

decimal A decimal constant is a sequence of the digits 0
through 9 without aleading 0. For example, 10
represents decimal 10.

hexadecimal A hexadecimal constant is a sequence of the
digitso through 9, a, b, c,d, e, f,0rA B, C,D,E,
F with aprefix of 0x or 0X. For example, Ox1a
represents the decimal value 26.

floating-point A floating-point constant consists of one or more
charactersthat the C library function at of
recognizes as a floating-point number, preceded
by an optional prefix listed in Table 7-2.

Representing Floating-Point Numbers

All floating-point constants are represented according to the IEEE
Sandard for Binary Floating-point Arithmetic.

Prefixes for Floating-point Constants

Prefix Used for

Of or OF Single-precision value, 32 bits

0d or OD Double-precision value, 64 bits
Oe or OE Extended-precision value, 80 bits

Assembly Language

The characters e, E, d or D designate the exponent field. Y ou can use only
.0 and 0. 0 asfloating-point literals with numerics instructions, as shown
in Table 7-3.

Table 7-3 Floating-point Literals
Representation Value Assembled
0.0 0f+0.0
1.0 0f+1.0
Example 7-1 uses numeric constants and literal valuesin assembly
language instructions.
Example 7-1 Example of Constants and Literal Values

/* exanpl e of nuneric constants */

nmov 31, g5 /* decimal */
nov 037, g5 /* sanme in octal */
nov Ox1f, g5 /* sanme in hex */
nmovr 0.0, g5 /* float literal */
novrl 0f1.0, g4 /* float literal */
addr 0.0,1.0,9g0 /* together */

Character Constants

A single-character constant is an ASCII character enclosed within
apostrophes (*). (The apostropheis ASCII decimal character 39.)

The value of an ASCII character constant is either the ASCII code for the
character or the C language interpretation of an escape sequence,
beginning with a backslash, as shown in Table 7-4.

7-5

i960® Processor Assembler User's Guide

Table 7-4 Character Constants
Escape Sequence Interpretation
\b backspace
\f form feed
\n new-line
\r carriage return
\t horizontal tab
\v vertical tab
\ backslash
\ apostrophe
\" quotation mark
\octal constant ASCII value of constant
String Constants
A string constant has the same syntax and semantics used in the C
language. Each string begins and ends with a quotation mark (*). All C
language conventions for the backslash are observed. See Table 7-4 for a
summary.
Strings are identified by value and length. However, the assembler does
not implicitly end strings with anull byte, unlike the C compiler. For
information on adding ASCI| string data to your assembly files, seethe
.ascii and. asci z directive entriesin Chapter 5.
Labels

A label isasymbol with alocation counter value and type. The assembler
recognizes the following kinds of labels:

global is an aphanumeric identifier, also called a name.
loca isasingle decimal digit (0 to 9), also called a
numeric label.

Assembly Language

Global labels are uniquely defined and remain in the output symbol table
unless the label name begins with aperiod (.) or an L. Labels beginning
with aperiod (.) or an L can beincluded in the symbol table by using the
assembler - d option. See Chapter 4 for more information.

Name (Global) Labels

A global label consists of an identifier followed by acolon (:). In effect, a
name label assigns the current value and section (e.g., .text or .data) of the
location counter to the name. A global label is referenced by its name.
Global labels beginning with adot (.) or an L are discarded from the
output symbol table, unless you use the - d option.

The assembler generates an error if asymbol is multiply defined.

Numeric (Local) Labels

A numeric label consists of adigit 0 to 9 followed by acolon (:). Numeric
|abels define temporary symbols of the form nb and nf , where n isthe
numeric digit of the label. References to symbols of the form nb refer to
the first numeric label n: backward from the reference; nf symbolsrefer to
the first numeric label n: forward from the reference.

Aswith global 1abels, a numeric label assigns the current value and section
(e.g., .text or .data) of the location counter to a symbol. Unlike global
symbols, which you can define only once within an assembly, numeric
labels are local symbols. Therefore, programs can define several identical
numeric labels (the same digit) within an assembly.

Expressions

An expression is a sequence of symbols representing a calculated value.
An expression can consist of identifiers, constants, operators, and other
expressions. Each expression has atype. Expressions can be grouped by
enclosing them within parentheses.

77

i960® Processor Assembler User's Guide

7-8

Integer quantities appearing in arithmetic expressions are represented
internally as two’s-complement numbers with 32-bit precision. You can
add only one forward-referenced external symbol to an expression.
Further, you can subtract only one forward-referenced externa symbol
from an expression. The exception to these rules isthat the difference
expression of backwards-reference external symbolsin the same section is
treated as a constant value (see Example 7-2).

Example 7-2 Forward-reference External Symbol in Expressions

/* LEGAL: Forward (+) Reference to a synbol */

.word _| abel
/* LEGAL: A single (+) and single (-) forward reference */

_| abel 4:
_| abel 5:
.word _label7 - _|abel6

_| abel 6:
_label 7:

/* LEGAL: The difference expression of two labels in the

* same section is treated as a constant, allow ng for

* other (+) or (-) references, up to 1 each maxi num

*/

.word (_label5 - _label4) + (_label7 - _label6) - _label8 + _|abel9

Operators

The assembler recognizes certain operators that you can use to form valid
expressions. These operators and the operations they represent appear in
Table 7-5.

Assembly Language

Table 7-5 Expression Operators
Symbol Operation
+ addition
- subtraction
* multiplication
/ division
% modulo
& bitwise and
| bitwise or
~ one’s complement
n bitwise exclusive or
>> logical right shift
<< logical left shift
<<=>>= less than, less than or equal to, greater than,
greater than or equal to
=== equals, not equals
&& logical and, does not short circuit
I logical or, does not short circuit
! la == if (a) then 0 else 1; (logical negation)
In Table 7-6, operators are listed in order of precedence from highest to
lowest.
Table 7-6 Operator Precedence

Type Operators
unary -+~
binary * 1, %
binary +, -

binary <<, >>

continued [

7-9

; i960® Processor Assembler User's Guide

Table 7-6 Operator Precedence (continued)
Type Operators
binary <, <=, >, >=
binary ==, I=
binary &
binary A
binary |
binary &&
binary |

All binary operators with the same precedence are evaluated from left to
right in the expression, except for any evaluation order enforced by
parentheses.

Expression Types

The assembler deals with several types of symbols and expressions. The
assembler recognizes the following expression types.

absolute An absolute symbol is defined ultimately from a
constant. Applying the linker to the output file
does not affect the value of absolute symbols or
expressions.

bss Thevaueof a. bss symbol is measured as the
number of bytes from the beginning of the. bss
section of aprogram. Like.text and. data
symboals, the value of a. bss symbol can change
on different linker runs.

data Thevaueof a. dat a symbol is measured as the
number of bytes from the origin of the . dat a
section. Like. t ext symbols, thevaue of . dat a
symbols can change on different linker runs.
After thefirst . dat a statement, the value of the
location counter O of the . dat a section.

7-10

Assembly Language

v

external absolute
text, data, or bss

register

text

undefined

undefined externa

Symbols can be declared as . gl obl but defined
within an assembly as absolute . t ext , . dat a, or
. bss symbols. These symbols are used exactly as
if they were not declared as globals. However,
their value and type are available to the linker so
that the program can be combined with others
that reference these symbols.

The assembler recognizes the predefined register
symbols shown in Table 7-6.

Thevaueof a. t ext symbol ismeasured asa
number of bytes from the beginning of the . t ext
section of the program. When assembler output
islinked, . t ext symbols can changein value.
Most . t ext symbols are labelsin the assembly
that define data or instruction locations. At the
start of an assembly, the value of the location
counter O of the . t ext section.

When the assembler identifies a new symbol
during assembly, the symbol is considered
undefined. It becomes defined when itis
assigned avalue or location. A symbol can
subsequently become undefined again if assigned
an undefined expression. Undefined operands
are not permitted with certain operators. A
symbol that remains undefined after assembly is
considered an undefined external.

A symbol declared . gl obl but not defined in the
current assembly is an undefined external. If you
declare such a symbol, use the linker to combine
the assembler’s output with another routine that
defines the undefined reference.

7-11

i960® Processor Assembler User's Guide

Table 7-7 Predefined Register Symbols

Registers Symbol Alias Purpose

local ro* pfp previous frame pointer
r1* sp stack pointer
r2* rip return instruction pointer
r3 through r15 general-purpose

global g0 through g13 general-purpose
gl4d linkage for bal instruction
g15* fp frame pointer

floating-point fp0 through fp3 general-purpose

special function sf0 through sf4 registers for architecture-

specific functions such as
DMA or cache control. See
your processor user’s

manual.
processor state ip instruction pointer
ac arithmetic controls
pc process controls
tc trace controls

* You must use the aliases, not the symbols, for registers r0, r1, r2, and g15.

Example 7-2 uses local, global, floating-point registers, and the instruction
pointer and is valid only for processors with the numerics architecture
(1960 SB or KB processors). Userstargeting the KA, SA, CA, CF, JA, JF,
JD, N, HA, HD, HT, RD, RP, RM, RN or VH processor can use the
AFP-960 library for emulated floating-point operation, which is described
in the iI960® Processor Library Supplemenn the assembly source, the
register names must not be capitalized.

7-12

Assembly Language

Example 7-3 Example of Register Usage

/* exanple of fp register usage */

movr 1.0, fpO # set fp0 = 0f+1.0
movr fpl, r6 # convert real formats
Id 0(gl4), rO # | oad based on gl4
addrl 1.0, fpl, g8 # g8:99 = fpl + Of+1.0
st g5, 4(ip) # store based on ip
lda (ip), gl4 # gl4 = value of ip

As shown in the exampl e, the instruction pointer register can be used only
to indicate indirection in instructions that allow an 1P indirect addressing
mode. You cannot usei p as an operand specifier by itself; itisnot a
general-purpose register. See the Memory-addressing Modes section in
this chapter for additional information on memory addressing modes.

The special function registers st 0 through sf 2 are defined in the 1960
processor architecture but implemented only on the CA and CF processors.
The 1960 Hx processor supports special function registers sf 0 through sf 4.
For more information about these registers, see your processor manual.

Type Propagation in Expressions

When operands are combined using operators, the resulting expression is
assigned a type that depends on the types of the operands and on the
operator. For purposes of expression evaluation, the assembler recognizes

these types:

e undefined
e absolute
e text

e data

e bss

* undefined external

7-13

i960® Processor Assembler User's Guide

7-14

When the assembler evaluates an expression with operands of different

types, the type of the resulting expression is determined by the following

rules:

* When one of the operandsis undefined, the result is undefined.

¢ When both operands are absolute, the result is absolute.

* When an absolute is combined with atype that is not absolute
(relocatable), the result is the same type as the non-absol ute operand.

These rules apply to the following binary operators. At least one operand
must be absolute; any other combinationisillegal:

+ When oneoperand isarelocatable . t ext , . dat a, or . bss symbol or
an undefined external symbol, the result has the postulated type: the
other operand must be absolute.

— When thefirst operand is arelocatable, the result is rel ocatable.

When both operands are absolute, the result is absolute.

Comments

The assembler recognizes the following as comments:
e Standard comments introduced by the # character.
e C-style comments placed between /* and */ characters.

The # character introduces a comment that extends through the end of the
line on which it appears.

The assembler also recognizes C-style comments, introduced with / * and
ending with */ . C-style comments cannot be nested. Thefirst */ token
terminates the comment, regardless of the number of / * tokens preceding
it. C-style comments can extend across multiple lines.

Assembly Language ;

Summary of Core Instructions

The core instruction set implements ordinal and integer arithmetic
operations along with program and processor control functions that support
the architecture. In this manual, the coreinstruction set is divided into
these categories:

Data manipulation These instructions move data, convert between
and processing different data types, and perform basic arithmetic
and boolean operations.

Program control These instructions alter the normal execution
sequence based upon specified conditions. These
instructions include ordinal and integer
comparisons, branching, and procedure call and
return.

Processor support These instructions explicitly or implicitly make
use of features of the 1960 processor: including
fault, trace, and process controls words, IAC
messages, and multiprocessor design support.

Data Movement

The data movement instructions transfer integer and ordinal data between
memory and the global and local registers (load and store instructions) and
between registers (move instructions). The mnemonic opcodes indicate the
size and type of data.

Besides moving data, the data movement instructions implicitly convert
between different datatypes. For example, the load integer short
instruction (I di s) copies a haf-word (16 bits) from memory into a
register. Thel di s instruction implicitly converts the half word to afull
word in the register, and the processor automatically sign-extends the
high-order 16 bits.

7-15

i960® Processor Assembler User's Guide

7-16

Load

These instructions copy data from memory to selected registers or register
groups:

| d load

| dob load byte ordinal
| dos load short ordinal
I dib load byte integer
I dis load short integer
| di load long

| dt load triple

| dg load quad

| da load address

All the load instructions use the MEM instruction format. Except for load
address, which stores the memory location address itself in the designated
register, the load instructions copy data from the addressed location to a
specified register or successive registers.

Byte and short ordinal operands are zero-extended when loaded; byte and
short integers are automatically sign-extended. Multi-register operations
require appropriate register alignment. Besides moving data, these
instructions are used for implicit data type conversions.

Store

These instructions copy data from selected registers or register groupsto
memory:

st store

stob store byte ordinal
st os store short ordinal
stib store byte integer
stis store short integer

Assembly Language

st store long
stt storetriple
stq store quad

All the store instructions use the MEM instruction format. The store
instructions copy data from the specified register or successive registersto
the addressed location. The processor reformats short and byte ordinal and
integer operands for the smaller memory location. Multi-register
operations require appropriate register alignment.

Move

The move instructions copy data from a selected register or register group
to another register or register group:

mov move word
mov| move long

movt movetriple
movq move quad

To movedatain real format between the global or local registers and the
floating-point registers, the numerics architecture of the KB and SB
processors provides a set of move real instructions. Multi-register
operations require appropriate register alignment.

Select

These data movement instructions are available on the 1960 Jx, Hx, and Rx
processors. They select one of two source registersto copy into a
destination register, based on the status of the condition code. All are REG
format instructions.

sel no select based on unordered

sel g select based on greater

sel e select based on equal

sel ge select based on greater or equal
sel | select based on less

7-17

; i960® Processor Assembler User's Guide

sel ne select based on not equal
selle select based on less or equal
sel o select based on ordered

Ordinal and Integer Arithmetic

Core instructions that perform ordinal, integer, and decimal arithmetic
belong to the following categories:

e basic arithmetic

e extended arithmetic

« conditional arithmetic

e remainder and modulo

« shift and rotate

All theinstructions in this category use the REG instruction format.

Basic Arithmetic

These instructions perform the basic arithmetic operations. add, subtract,
multiply, and divide:

addo add ordinal

addi add integer
subo subtract ordinal
subi subtract integer
mul o multiply ordinal
mul i multiply integer
di vo divide ordinal

di vi divide integer

The basic arithmetic operations are carried out on ordinal and integer word
operands contained in global or local registers. Usethe load and store
instructions to move data between memory and the registers.

7-18

Assembly Language ;

Extended Arithmetic

The extended arithmetic instructions support operations on single- or
dual-word operands:

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

edi v extended divide

In the add and subtract with carry instructions, the carry bit in the condition
code (CC) of the arithmetic controls word (AC) participatesin the
operation. The integer overflow flag in the AC (used with the integer
overflow mask) is set to indicate whether or not an overflow condition
resulted from the operation. These two instructions facilitate
multiple-precision addition and subtraction in assembly language
programs.

The extended multiply (enul) instruction multiplies two ordinalsin
registers and copies the result into an aligned dual-register group. The
extended divide (edi v) instruction performs the inverse operation, dividing
along ordinal (double-word) by an ordinal (word) resulting in a quotient
and remainder (both ordinals) in a dual-register group.

Conditional Arithmetic

The conditional arithmetic instructions are available on the 1960 Jx and Hx
processors. They combine addition or subtraction with checking the
condition code. They add or subtract the two source registers and copy the
result into the destination, but only if the status of the condition codeis
correct for the given instruction. All are REG format instructions.

addono add ordinal if ordered

addog add ordinal if greater

addoe add ordinal if equal

addoge add ordinal if greater or equal
addol add ordinal if less

addone add ordinal if not equal

7-19

i960® Processor Assembler User's Guide

7-20

addol e
addoo
addi no
addi g
addi e
addi ge
addi

addi ne
addi l e
addi o
subono
subog
suboe
suboge
subol

subone
subol e
suboo
subi no
subi g
subi e
subi ge

subi |

add ordinal if less or equal
add ordinal if ordered

add integer if ordered

add integer if greater

add integer if equal

add integer if greater or equal
add integer if less

add integer if not equal

add integer if less or equal

add integer if ordered

subtract ordina if ordered
subtract ordinal if greater
subtract ordinal if equal
subtract ordinal if greater or equal
subtract ordina if less
subtract ordinal if not equal
subtract ordinal if less or equal
subtract ordina if ordered
subtract integer if ordered
subtract integer if greater
subtract integer if equal
subtract integer if greater or equal
subtract integer if less

Assembly Language

subi ne subtract integer if not equal
subile subtract integer if less or equal
subi o subtract integer if ordered

Remainder and Modulo

These arithmetic instructions divide the operands and retain the remainder
of the operation, discarding the quotient:

rem remainder integer
renmo remainder ordina
modi modulo integer

In the remainder instructions, the result has the same sign as the dividend.
The result of the modulo instruction has the same sign as the divisor.

Shift and Rotate

The shift and rotate instructions implicitly perform arithmetic functions by
shifting the bitsin a register operand:

eshro extended shift right ordinal (1960 Cx, Jx, and Hx
processors only)

shl o shift left ordinal

shro shift right ordinal

shl i shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate bits

The shift instructions discard bits shifted out of the high-order or low-order
bits of the register. Ther ot at e instruction replaces bits shifted out of the
high-order bits of the operand in the vacated low-order bit positions.

7-21

i960® Processor Assembler User's Guide

7-22

The shift right integer instruction does not correctly divide negative
operands by powers of two arithmetic, although it does perform a
conventional shift operation. To divide negative integer operands
correctly, use the shift right dividing integer (shr di) instruction instead of
the shift right integer (shri) instruction.

The extended shift right ordinal instruction (eshr o) is the equivalent of an
extended divide by a power of 2, which produces no remainder.

Logical

These instructions perform the bitwise boolean (logical) functions on word
operands in the specified registers. The only unary operation is carried out
by the not instruction, which negates the bitsin the sr ¢ operand,
represented by A in thelist below.

In describing the remaining logical instructions, the letter A represents a bit
in the src2 operand and B represents the corresponding bit inthe src1
operand.

NOTE. The binary logic functions process the source operands in reverse
order.

not not A

and AandB

not and (not A) and B
andnot A and (not B)
nand not (A and B)
or AorB

not or (not A) or B
or not A or (not B)

Assembly Language

nor not (A or B)
xor not (A = B)
xnor A=B

Tables 7-8 through 7-10 show the operands and results of the binary
logical operations. The unary not instruction simply complements bits
(clears hits that are set and sets bits cleared to 0) in a bitwise fashion for

each of the 32 bits of the sr ¢ operand.

Table 7-8 Unary Operation

A not

0 1

1 0
Table 7-9 Binary Operations
A B and notand andnot nand or
0 0 0 0 0 1 0
0 1 0 1 0 1 1
1 0 0 0 1 1 1
1 1 1 0 0 0 1
Table 7-10 Binary Operations Continued
A B notor ornot nor xor xnor
0 0 1 1 1 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
1 1 1 1 0 0 1

7-23

i960® Processor Assembler User's Guide

7-24

Bit, Bit Field, Byte

The bit and bit field instructions perform operations on a contiguous series
of bitswithin an ordinal word. Aswith the arithmetic instructions, the bit
and bit field instructions operate only on data placed in global or local
registers. Use the data movement instructionsto transfer data between
memory and the registers. The processor also provides two byte
operations, scanbyt e and bswap.

Bit Operations

These instructions operate on a single specified bit in aglobal or local
register.

set bi t Set bit
clrbit clear hit

not bi t not bit

chkbi t check bit
alterbit alter bit
scanbi t scan for bit
spanbi t span over bit

Thesetbit,clrbit,andnotbit instructions set, clear, or complement
the specified bit in an ordinal word. The chkbi t instruction sets the
condition code (CC) in the arithmetic controls word (AC) according to the
state of the specified bit. Theal t er bi t instruction changes the state of
the bit based on the condition code setting.

Thescanbi t and spanbi t instructions return the bit number of the
most-significant set and clear bit in the source operand, respectively.

Assembly Language

Bit Field Operations

Two instructions operate on abit field, specified by the bit position of the
least-significant bit in the field and the length of the field:

extract extract bit field
modi fy modify under mask

Theext ract instruction shifts the specified bit field to the right and fills
the vacated high-order positions with zeros. The nodi fy instruction copies
the specified bit field in one register to another, under control of a mask.
Thisinstruction preserves bits corresponding to masked bit positions.

Byte Operations

The scanbyt e instruction compares two ordinals on a byte-by-byte basis,
testing whether or not any two corresponding bytes in the ordinals are
equal. Thescanbyt e instruction then sets the condition code (CC)
according the outcome: successful (TRUE) or unsuccessful (FALSE).

The bswap instruction, available only on i960 Jx, Hx, and Rx processors,
reverses the byte order within a 4-byte word. Bytes 0 and 3 are swapped,
and bytes 1 and 2 are swapped. ThisisaREG format instruction.

Comparison

Several types of instructions facilitate the comparison of instruction
operands. These instructions often are used for program decision-making
and can result in a subsequent call or branch. Compare and conditional-
compare instructions, as well as compare-and-increment or compare-and-
decrement instructions, are included in the core architecture.

The comparison instructions use REG format and operate on the following

types of data:
e ordina

e integer

* red

7-25

i960® Processor Assembler User's Guide

7-26

This chapter discusses comparison of ordinal and integer datatypes; the
real data types and related operations are discussed in your processor
manual.

Compare and Conditional Compare

The following instructions compare the specified operands, in global or
local registers, and set the condition code (CC) in the arithmetic controls
word (AC) according to the results of the test:

cnpi compare integer

cnpo compare ordina

concnpi conditional-compare integer
concnpo conditional-compare ordinal
cnpob compare ordina byte

cnpi b compare integer byte

cnpos compare ordinal short

cnpi s compare integer short

The byte and short versions of thisinstruction are available only on the
1960 Jx and Hx processors.

Thecnpi and cnpo instructions simply test the operands and set the
condition code. The concnpi and concrrpo ingtructions first examine the
status bit (bit 2) of the condition code and compare the operands only if the
status bit isnot set. If the status bit is set, no further action occurs.

These instructions optimize two-sided range comparisons, to test whether a
given value lies between two others. A compare instruction (crpi or
conpo) checks one side of the range and a conditional-compare instruction
(concnpi or concnpo) checks the other, based upon the result of the first
comparison.

Compare and Increment or Decrement

The following compare-and-increment or compare-and-decrement
instructions compare two specified source operands and set the condition
code based on the resullt:

Assembly Language

cnpi nci compare and increment integer
cnpi nco compare and increment ordinal
cnpdeci compare and decrement integer
cnpdeco compare and decrement ordinal

These instructions either increment or decrement the destination register by
1. The compare-and-increment or compare-and-decrement instructions
provide a convenient way to control iterative program loops.

Branch

The branch instructions direct the processor to continue executing a
program’s instructions at another memory address, sometimes
conditionally. To accomplish this end, these instructions modify the
current instruction pointer (IP). The new value of the |P can be specified
as a displacement applied to the instruction pointer (COBR and CTRL
instruction formats), or defined using several memory addressing modes
(MEM instruction formats).

The branch instructions provide the following program control functions:
» unconditional branch

e conditional branch
e compare and branch

In addition to these machine instructions, Chapter 8 describes several sets
of pseudo-instructions to simplify coding branch instructions.

7-27

i960® Processor Assembler User's Guide

7-28

Unconditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address under any condition:

b branch

bx branch extended

bal branch and link

bal x branch and link extended

The branch (b) instruction uses the CTRL format, with alimited addressing
range, while the branch extended (bx) instruction uses MEM format with a
full addressing range and corresponding memory address modes.

Like the branch instructions, the bal and bal x instructions use CTRL and
MEM formats, respectively. These instructions save the address of the
next sequential instruction and branch unconditionally to the specified
address.

Typically, the branch-and-link instructions are used to pass control to local
program procedures. (Local procedures are procedures that do not require
the processor’s call-and-return mechanism.)

Conditional Branch

The following instructions direct the processor to continue executing
instructions from a supplied address depending on the status of the
condition code (CC) bitsin the arithmetic controls (AC) word:

be branch if equal

bne branch if not equal

bl branch if less

bl e branch if less or equal
bg branch if greater

Assembly Language ;

bge branch if greater or equal
bo branch if ordered
bno branch if unordered

These instructions also use the CTRL format and specify the target
memory address as a displacement from the current instruction pointer
(IP). Usethe branch if ordered (bo) and branch if unordered (bno) to
compare real number operands.

A set of branch real pseudo-instructions supplement the bo and bno
instructions to include comparisons of real numbers. In addition, the
branch if true (bt) and branch if false (bf) directives provide convenient
mnemonics for branching on specific conditions. See Chapter 8 for more
information on the branch pseudo-instructions.

Compare and Branch

The ordinal and integer compare-and-branch instructions compare the two
source operands, set the condition code (CC), and branch to the specified
address depending on the result. These instructions are:

cnpobe compare ordinal and branch if equal
cnpobne compare ordinal and branch if not equal
cnpobl compare ordinal and branch if less

cnpobl e compare ordinal and branch if less or equal
cnpobg compare ordinal and branch if greater
cnpobge compare ordinal and branch if greater or equal
cnpi bo compare integer and branch if ordered
cnpi be compare integer and branch if equal

cnpi bne compare integer and branch if not equal
cnpi bl compare integer and branch if less

cnpi bl e compare integer and branch if less or equal

7-29

i960® Processor Assembler User's Guide

7-30

cnpi by compare integer and branch if greater
cnpi bge compare integer and branch if greater or equal
cnpi bno compare integer and branch if not ordered

Two other compare and branch instructions operate on a single-bit operand
in an ordinal word in aglobal or local register:

bbc branch on bit clear
bbs branch on bit set

All compare-and-branch instructions use the COBR instruction format,
implying alimited address range. See also the compare-and-jump
pseudo-instructions, described in Chapter 8.

Call and Return

For programming convenience, i960 processors provide various
mechanisms for making procedure calls. The following instructions
support the processor’s call-and-return mechanism:

cal | call to local procedure using 24-bit addressing
cal | x call to procedure using full 32-bit addressing
calls call to a system procedure

ret return

Like the branch instructions, the cal | instruction uses the CTRL format,
with alimited addressing range, while the cal | x instruction uses MEM
format with afull addressing range and corresponding memory address
modes.

Thecal | s instruction provides a supervisor call capability, deriving the
procedure address from the system procedure table, using a specified index
number to determine the correct table entry to reference. Thetable entry
determines whether procedures in the table can execute in supervisor
mode. Upon return from the called procedure, the processor resumes its
previous execution mode.

Assembly Language

The assembler provides two pseudo-instructions which are optimized by
the linker:

callj standsfor acal I , bal , or cal | s instruction
calljx standsfor acal | x, bal x, or cal | s instruction

Withthecal I'j andcal | j x pseudo-instructions, you can make symbolic
referencesto a variety of function types without using an explicit call or
branch-and-link instruction. The linker chooses the appropriate instruction
or instruction sequence for the symbol type and performs call optimization,
if possible. For additional information on call optimization, see the i960®
Processor Software Utilities User's Guide

Fault

Normally, the processor implicitly generates faults when exceptions occur
and handles them automatically through the programmer-defined fault
table. The address of the fault table is supplied to the processor at
initialization time. Y ou can inhibit certain faults by using the fault
controls, or masks.

The following fault-if instructions allow a running program to raise a fault
condition explicitly:

faulte fault if equal

faul tne fault if not equal
faultl fault if less

faultle fault if less or equa
faultg fault if greater

faul t ge fault if greater or equal
faulto fault if ordered

faul t no fault if unordered

The processor services afault generated by one of these instructions asiif it
were generated implicitly, as aresult of an exception. See your processor-
manual for information on enabling and masking faults.

7-31

i960® Processor Assembler User's Guide

7-32

Chapter 8 explainsthe fault if true (f aul t t) and fault if false (f aul t f)
assembler pseudo-instructions that provide a mnemonic method for
generating faults based on logic conditions.

Debug

Several processor instructions support the processor’s on-chip debugging
facilities. These facilities include atrace controls word and associated
masks, allowing the program to enable or disable specific types of trace
functions. The debug instructions are:

modt ¢ modify trace controls
mar k mark a breakpoint
f mar k force mark a breakpoint

The nodt ¢ instruction alows arunning program to change the bitsin the
processor’s trace controlsword. The mar k and f mar k instructions
generate a breakpoint trace event: the mar k instruction generates the event
if the breakpoint trace mode is enabled by the trace controls word, while
the f mar k instruction generates an unconditional breakpoint event.

See your processor manual for information on the trace mechanism and
associated controls.
Processor Management

The following instructions read or modify bitsin the arithmetic and
processor controls words:

modac modify arithmetic controls
modpc modify process controls
sysct | perform system control function on the 1960 Cx,

Jx or Hx processors

Assembly Language

Note that with there are special rules for using anodpc instruction with the
1960 Rx architectures . The syntax for using the modpc instruction with any
1960 architecture other than Rx is:

nodpc src, mask, src/dst

With the 1960 Rx architecture, the first and third arguments must be the
same. If these arguments are not the same, the assembler generates a
warning.

Another instruction that is useful for processor management is the

f1 ushreg instruction. f I ushr eg saves all but the current local register set
ensuring that the local register save areas contain the same data as the
processor’s local register sets.

The following processor management instructions are specific to the 960
JX, Rx, and Hx processors:

Table 7-11 Supported Processor Management Instructions
Instruction Description 80960Jx 80960RXx 80960HXx
intdis global interrupt disable Yes Yes Yes
inten global interrupt enable Yes Yes Yes
intctl global enable and disable of Yes No Yes
interrupts
icctl icache control Yes Yes Yes
dcct | dcache control Yes Yes Yes
hal t halt CPU Yes No No
dci nva data cache invalidate by No No Yes
address

The following test-if instructions alow programs to examine the bits of the
condition code, which can then be used to redirect program flow:

teste test if equal
testne test if not equal
testl test if less
testle test if lessor equal

7-33

i960® Processor Assembler User's Guide

7-34

testg test if greater

test ge test if greater or equal
testo test if ordered

test no test if unordered

Synchronous (K-series only)

On K-series processors, the synchronous instructions move datafrom a
register to memory or from one memory location to another.

synl d synchronous load
synmov synchronous move
synnov| synchronous move long
synnovq synchronous move quad

Thesynl d instruction copies aword from aregister into memory. The
synchronous move instructions transfer data from one location in memory
to another.

Normally the processor executes store instruction asynchronously with
respect to the memory controller. That is, after placing information on the
data bus for storage in memory, the processor assumes that bus control
logic carries out the operation and continues with the next instruction. In
contrast, the synchronous instructions perform store and move operations
synchronously with memory.

When executing any of the synchronous instructions, the processor must
wait until that instruction and any other pending memory access
instructions are completed before executing the next instruction.

The processor indicates that a synchronous instruction is complete by
setting the condition code hit (CC) in the arithmetic controls word (AC).
Use these instructions when you must be sure that memory operations are
completed before further processing takes place, asin multiprocessor
designs. See also the section on atomic instructions below.

Also, the synchronous instructions can be used as a mechanism to avoid
interrupts when sending interagent communication (IAC) messages.

Assembly Language

Atomic

An atomic access is a processor read-modify-write operation on a 32-bit
word of memory. In multiple-processor designs, while one processor
performs an atomic access, other processors in the system cannot access
the same memory block until the original operation is complete. The
atomic instructions are:

at add atomic add
at mod atomic modify

The at add and at nmod instructions add or modify the datain a specified
memory location and guarantee the integrity of the operation.

Summary of On-chip Numerics Instructions

Floating-point instructions have at least one operand that is areal datatype.
They include the following functional categories of instructions:

e datamovement instructions

e sign copying instructions

« datatype conversion instructions

e comparison and classification instructions

» basic arithmetic instructions

e trigonometric functions

» logarithmic, exponentia, and scale instructions

¢ decima data manipulation instructions

The following sections summarize the instructions in each group.

Data Movment

Several ordinal and integer load and store instructions (I d/ st, 1 dl / st 1,
I dt/stt, | dg/stq) moved, 8, 12, or 16 bytes of data between memory
and local or global registers without regard to datatype. The core
architecture move instructions (mov, nmovl , novt , movq) can then transfer
the contents of 1 to 4 local or global registers to another non-overlapping
group of 1 - 4 local or global registers without changing formats. real
values remain real, integer values remain integer, and so on.

7-35

i960® Processor Assembler User's Guide

7-36

Three move real instructions are provided in the numerics architecture:

nmovr move real
movr | move long-real
novr e move extended-red

Thermovr and movr | instructions are most often used to transfer real-
valued data between global and local registers and floating-point registers
when aformat changeis desired. Thistechnique implicitly converts 32-bit,
64-bit, or 96-bit real datato 80-bit extended-real format and vice versa.

The following procedure converts 32-bit real datato a 64-bit real

representation:

1. Movea32-bit real dataword into a floating-point register using the
movr instruction. This step implicitly convertsthe real value into an
extended-real value.

2. Move the extended-real value from the floating-point register to two
global or local registers using the novr | instruction. The processor
explicitly converts the extended-real number into a 64-bit long-red
value in two global or local registers.

To convert implicitly from real and long-real to extended-real data format,
use the floating-point registers as operands in arithmetic, trigonometric,
logarithmic, and exponentia operations.

The movr e instruction copies extended-real values between a 80-bit
floating-point register and atriple global or local register group (96 bits).
The instruction does not alter the data type. However, when moving data
from afloating-point register to aregister group, the movr e instruction
inserts 16 zeros in the high-order bit positions to pad the third data word.
When moving the contents of the register group to afloating-point register,
thisinstruction deletes the most significant 16 bits of the word in the third
register.

Sign Copying
The numerics architecture provides two sign-copying instructions:
cpysre copy sign extended-real

Assembly Language

cpyrsre copy reverse sign extended-real

These instructions enable you to copy the sign of one extended-real value,
or itsreverse, to another. Both operate exclusively on extended-real data
types, and at least one of the values must be in a floating-point register. To
copy the signs of real or long-real values, usethechkbit andal t er bi t
instructions.

Data Type Conversion

To convert between floating-point formats, for example between real and
extended-real formats, use the move rea instructions described in the Data
Movement section. To convert between integer and real number formats,
the numerics architecture provides these explicit instructions:

cvtir convert integer to red

cvtilr convert long integer to red

cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Thecvtir andcvtil r instructions can change their 32-bit and 64-bit data
types to 80-hit extended-real values or 32-bit real values, respectively. The
move real instructions can then convert the result to 64-bit long-real format
if desired.

Thecvtri andcvtril instructions change 32-bit rea or 80-bit extended-
real numbersto integers. Hence, to convert a 64-bit long-real value to an
integer, first convert it to an extended-real format using the appropriate
move real instruction. Then use one of the convert real instructions to
transform the extended-real value to the desired integer format.

Thecvtzri andcvtril instructions allow efficient implementation of
FORTRAN or C-style truncation semantics. They ignore the rounding
mode hits in the arithmetic controls word, and round toward zero always.

7-37

i960® Processor Assembler User's Guide

7-38

Basic Arithmetic

The following instructions perform the basic arithmetic operations
specified in the |IEEE standard:

addr add real

addr | add long-real

subr subtract resl

subr | subtract long-red
mul r multiply real

mul r | multiply long-real
di vr divide real

divrl divide long-red
reny remainder resl
renrl remainder long-real
r oundr round resl

roundr | round long-red
sqrtr square root real
sqrtrl square root long-real

These instructions correspond to many of the core architecture instructions
in the same functional category. However, in the numerics architecture all
arithmetic operations require real or long-real data types as operands and
result in real numbers.

The results and operands of instructions such asaddr , subr, nul r, €tc.,
can be 32-bit real, or 80-hit extended-real values. Similarly, results and
operands of the arithmetic long-real instructions, such asaddr | , subr |,
and nul r 1, can be 64-bit long-real, or 80-bit extended-real values.

The add, subtract, multiply, divide, and square root instructions represent
relatively standard, straight-forward mathematical functions performing the
operations their namesimply.

Therenr andrenr! instructions divide the contents of aregister or dual-
register group by the value in another register (or pair) and produce the

Assembly Language

remainder of the quotient; the quotient itself isignored. For example, if
the real number 987.34 is divided by 185.769, the quotient is 5.31488...
and the remainder is the fractional portion of the quotient, .31488... These
instructions differ from the |EEE standard by the way in which the integer
portion of the quotient is determined.

Theroundr androundr| instructions convert area or long-real operand
to an integer value based on the current rounding mode. The integer result
remains in floating-point format. The current rounding mode is determined
by the setting of the rounding mode bits in the arithmetic controls word
(AC).

For example, the real-valued result 137.85 isrounded to 137.0 if the
rounding controls are set to round toward zero. The same number is
rounded to 138.0 if the rounding controls are set to round to infinity.

Decimal

The decimal instructions operate on 32-bit operands that contain an
ASCII-coded decimal digit in the least-significant 8 bits of the data word.

dnovt decimal move and test
daddc decimal add with carry
dsubc decimal subtract with carry

Thednovt instruction moves a 32-hit word from one register to another
and tests the least-significant byte of the operand to determineif itisa
valid ASCII-coded decimal digit (00110000, through 00111001,
corresponding to the decimal digits 0 through 9). For valid digits, the
condition code (CC) is set to 000,; otherwise the condition code is set to
010,.

The daddc and dsubc instructions operate on two decimal digits. Bit 1 of
the condition code indicates adecimal carry-in or carry-out condition. For
example, you can use the decimal instructionsiteratively to validate ASCI|
digit strings and to add or subtract ASCII-coded decimal values.

7-39

i960® Processor Assembler User's Guide

Note that as of CTOOL Srelease 5.1 and later, the assembler no longer
accepts decimal instructions when assembling for aKA or an SA target,
since decimal instructions are not supported by those processors.

Comparison and Classification

To compare and classify floating-point values, use the numerics
instructions:

cnpr compare real

cnprl compare long-real

cnpor compare ordered red
cnpor | compare ordered long-real
cl assr classify real

cl assrl classify long-real

Thecnpr and cnpr | instructions compare the contents of two registers and
set the condition code bits (CC) in the arithmetic controls word (AC) to
indicate the results of the comparison. For floating-point operands, when
at least one comparand is a NaNs, the condition code indicates unordered.

The crpor and cnpor | instructions set the invalid-operation flag for an
unordered condition.

Use the core-architecture branch-ordered (bo) and branch-unordered (bno)
instructions to test the floating-point comparison results, with conditional
branching if an ordered or unordered condition is detected.

Thecl assr and cl assr | instructions determine the class of areal or long-
real operand as zero, denormalized finite, normalized finite, infinite,
SNaN, or QNaN. The AC arithmetic status bits indicate the result.

Trigonometric Functions
For the common trigonometric functions, use the numerics instructions:

sinr sinered

sinrl sine long-real

Assembly Language

cosr cosinered

cosrl cosine long-real
tanr tangent real

tanrl tangent long-real

at anr arctangent real
atanrl| arctangent long-real

All the trigonometric functions require real or long-real operands and yield
floating-point results. The values of angles must be given in radians.

The results and operands of instructions such assi nr, cosr, andt anr can
be 32-bit real or 80-bit extended-real values. Similarly, results and
operands of the trigonometric long-real instructions, such assi nrl, cosrl
andt anrl, can bein 64-bit long-real or 80-bit extended-real format.

Theat anr and at anr | instructions return aresult in radians. Aswell as
supplying the inverse tangent of the argument, these instructions facilitate
conversion from rectangular to polar coordinates.

If the operands of trigonometric functions are computed using pi, then the
full 66-bit representation for pi given in your processor-specific manual
must be used. Truncated values are permissible when accuracy is not
crucial.

7-41

; i960® Processor Assembler User's Guide

Logarithmic, Exponential, and Scale

For logarithmic, exponential, and scale functions, use the numerics

instructions:

| ogbnr log binary red

| ogbnr | log binary long-real
| ogr log red

| ogr | log long-real

| ogepr log epsilon real

| ogepr | log epsilon long-real
expr exponent red

expr | exponent long-real
scal er scalered

scal er| scale long-real

All these functions require real or long-real operands and yield floating-
point results.

The results and operands of instructions such as| ogr, expr, and scal er
can be 32-bit real or 80-bit extended-real format. Similarly, results and
operands of the trigonometric long-real instructions, such as! ogr | , exprl ,
and scal erl can bein 64-bit long-real or 80-bit extended-real format.

Thel ogbnr and | ogbnr | instructions compute the logarithm to the base 2
of the source operand and retain only the integer component. The result is
an integer that is the binary log of the given number. For instance, log,
3249 = 11.65532..., but the binary log function returns the value 11
(decimal) in floating-point format. Thel ogbnr and | ogbnr | instructions
determine the order of magnitude of a specified number.

7-42

Assembly Language

Thel ogr and | ogr! instructions compute the logarithm to the base 2 of
one source operand (sr c¢1) and scale the result by a second operand
(src2), to obtain the result (dst):

dst = srcl * logy src2

By carefully specifying the sr c2 operand, logarithms to any base can be
computed using these instructions. For instance, by specifying a scale
factor of src1=.30102. .., thelogarithm base 10 (common log) is
obtained.

Thel ogepr and | ogepr | instructions compute the logarithm to the base 2
of 1. 0 plusthe src1 operand and scale (sr ¢2 operand) the result to obtain
theresult (dst):

dst = src2 * logs (1.0 + srcli)

The sr c1 operand isrestricted to values near zero which yields maximum
accuracy for 1. 0 + src1 near unity (i.e., the src1 operand is close to zero).
This condition, for instance, is commonly encountered when computing
compound interest. By carefully choosing the sr c2 operand, logarithms to
any base can be computed.

Theexpr and expr | instructions compute the value:

dst = 257¢ . 1

The src must beintherange-.5to+. 5. Thescal e andscal er|

instructions multiply the sr c2 operand by 2 to an integer power, denoted
by the src1 operand, for the result (dst):

dst = src2 * 2Srcl

The exponent and scal e instructions can be used together to create an
algorithm for computing the value of 2 to any power by noting that:
2Y = o(X+ 1) = ol « [(ZX- 1) + 1]

The Yisan arbitrary exponent: / and X represent the integer and fractional
portions of the exponent, respectively.

Pseudo-instructions

Syntax

This chapter describes the pseudo-instructions (pseudo-ops) recognized by
the assembler.

Pseudo-instructions appear in the assembly file like valid machine
instructions. In actuality, the assembler substitutes one or more
machine-level instructions for them. For example, when you enter the
optimized load constant or | dconst , the assembler selects the fastest
instruction available to place the specified value in the designated register.
Thisinstruction can be amove, add, subtract, shift, or load-address,
depending on the given value.

For convenience, the assembler provides pseudo-instructions that are
synonyms for certain branch, fault, load, and compare-and-branch
instructions, as described in the following sections. These pseudo-
instructions are functions of the assembler and not of any particular
processor implementation. In general, you can use them in any assembly
language source file. Any implementation-dependent differences are
noted.

Pseudo-instructions use the same syntax for operands as machine
instructions.

The operand names describe the function of the operands
(eq., src, dst, targ).

81

i960® Processor Assembler User's Guide

Branch Pseudo-instructions

The assembler recognizes the pseudo-instructions bt (branch if true) and
bf (branch if false) as synonyms for the instructions bo (branch if ordered)
and bno (branch if not ordered), respectively.

For convenience in checking the results of real number (floating-point)
comparisons, several branch pseudo-instruction are available. Table 8-1
lists these pseudo-instructions with the equivalent instructions.

Table 8-1 Branch Real Pseudo-instructions
Directive Operation Instruction
bre branch real if equal be
brg branch real if greater bg
brge branch real if greater or equal bge
brl branch real if less bl
brle branch real if less or equal ble
brlg branch real if less or greater bne
bro branch real if ordered bo
bru branch real if unordered bno
brue branch real if unordered equal be,bno
brug branch real if unordered greater bg,bno
bruge branch real if unordered greater or equal bge,bno
brul branch real if unordered less bl,bno
brule branch real if unordered less or equal ble,bno

brulg branch real if unordered less or greater bne,bno

Pseudo-instructions 8

Migration-enabling Pseudo-instructions

Release 6.0 provides a number of pseudo-instructions to ease migration
between processors. These pseudo-ops provide an architecture-

independent method for performing some of the more common low-level
processing operations. Using these pseudo-ops should reduce the number

of changes required when moving assembly code from one i960®
processor to another. Table 8-2 lists all of the new pseudo-instructions
supported by the CTOOLS assembler.

8-3

i960® Processor Assembler User's Guide

84

Table 8-2. New Assembler Pseudo-Instructions

Instruction
atomic_add
atomic_maodify
bkpt_request
cc_read
cc_scanbit
dc_disable

dc_enable
dc_invalidate
em_read

ic_disable

ic_enable
ic_invalidate
ic_load_lock
insn_trace_mode_read
insn_trace_mode_set
interrupt_state
ip_read

pri_read

sw_reinit

trace_enable_set

Action

Atomic add

Atomic modify

Request breakpoint resources
Read condition code

Scan for bit, modifying condition code

Disable data cache

Enable data cache
Invalidate data cache

Read execution mode
Disable instruction cache
Enable instruction cache
Invalidate instruction cache
Load and lock instruction cache
Read instruction trace mode
Set instruction trace mode
Read interrupt state

Read instruction pointer
Read execution priority
Reinitialize processor

Set trace enable bit

Pseudo-instructions 8

Conditional Faults Pseudo-instructions

The assembler also has equivalent pseudo-instructions that help with
conditional faults. The assembler recognizesf aul tt (fault true) and

faul tf (fault false) as synonymsfor the instructionsf aul t o and f aul t no.
These pseudo-instructions have the same syntax as the machine
instructions

Load Pseudo-instructions

Thel dconst pseudo-instruction automatically optimizes loading of
integer and ordinal immediate constant values. Immediate values that
cannot be expressed as literals must be explicitly loaded into a register
before they can be used as operands for machine instructions. For integer
and ordinal operands, loading can be done using thel dconst directive.
Thel dconst directive generates different instructions for severa different
immediate values, based on architecture performance concern. For alist of
| dconst substitutions, see the Example section of the alphabetical
reference entry for | dconst later in this chapter.

Call Pseudo-instructions

Thecal Ij andcal I j x pseudo instructions et you assemble a call
instruction, allowing the linker to perform call optimization, when possible.
The linker transforms call pseudo-instructions into the appropriate
instruction at link time, depending on the type (default, leaf, or system) of
the called procedure. See page 8-14 for more information.

Compare-and-jump Pseudo-instructions
For compare-and-branch instructions, the assembler provides a convenient,

symbolic way to specify the operation by using a set of compare-and-jump
pseudo-instructions.

85

i960® Processor Assembler User's Guide

In the compare (ordinal or integer) and branch-on-condition instructions
(such asthe cnpobe instruction), the branch target must be fewer than 212
bytes from the instruction pointer (IP). Asan aternative, you can use the
compare-and-jump pseudo-instructions provided by the assembler. These
pseudo-instructions generate a compare-and-branch (e.g., crpobe)
instruction if the target is fewer than 2 bytes away, or separate compare
and branch instructions otherwise.

Form the compare-and-jump pseudo-instructions by substituting aj for the
b in the corresponding instruction’s mnemonic. For example, the
instruction be becomes pseudo-instruction j e; cnpobe becomes cnpoj e.
As another example, when you used the pseudo-instruction:

cnpije r5, r6, target

the assembler generates:
conpibe r5, r6, target

if the label iswithin 2 bytes, or:

conpi r5, r6
be target

otherwise,

NOTE. These pseudo-instructions never generate a branch-extended
instruction. If you cannot guarantee that the branch addressis fewer than
223 bytes away from the instruction pointer, you must use the equivalent
extended instruction sequence.

Pseudo-instructions

Table 8-3

The compare-and-jump pseudo-instructions appear in Table 8-3. Each
pseudo-instruction is paired with the operation it performs.

Compare-and-jump Pseudo-instructions

Pseudo-instruction Full Function Name

cmpije compare integer and jump if equal

cmpijg compare integer and jump if greater

cmpijge compare integer and jump if greater or equal
cmpijl compare integer and jump if less

cmpijle compare integer and jump if less or equal
cmpijne compare integer and jump if not equal
cmpoje compare ordinal and jump if equal

cmpojg compare ordinal and jump if greater
cmpojge compare ordinal and jump if greater or equal
cmpojl compare ordinal and jump if less

cmpojle compare ordinal and jump if less or equal
cmpojne compare ordinal and jump if less not equal

Two pseudo-instructions never branch:
cnpi j no compare integer and jump if not ordered.

cnpoj no compare ordina jump if not ordered. The
equivalent instruction iscnpi bno.

Two pseudo-instructions always branch:
cnpijo compare integer and jump if ordered.

cnpoj o compare ordinal and jump if ordered. The
equivalent instruction iscnpi bo.

Ordered relationships apply only to real numbers on i960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops).

87

8 i960® Processor Assembler User's Guide

Pseudo-instructions Reference

This section describes the pseudo-instructions in alphabetical order.

The syntax descriptions use the placeholder t ar g for any operand that isan
expression representing amemory address. The assembler treatsat arg
operand as a signed displacement value representing an | P-rel ative address,

asfollows:

Format Displacement in Words

COBR -210 through 210-1

CTRL -221 through 221-1
atomic_add
Atomic Add

Syntax

atom c_add addr, src, dst

reg reg/lit reg
Discussion

Adds src value (full word) to value in the memory location specified with
addr operand. Initia value from memory is stored in dst. Memory read

and write are done atomically (i.e., other bus masters must be prevented
from accessing the word of memory containing the word specified by
src/dst operand until operation completes). Memory location in addr isthe
word’s first byte (LSB) address. Address is automatically aligned to a
word boundary.

8-8

Pseudo-instructions

Expansion: Pr ocessor Output
Cx, X, Hx atadd addr, src, dst

atomic_modify

Atomic Modify
Syntax
atom c_nodify addr, mask, src/dst
reg reg/lit reg
Discussion

Copiesthe selected bits of src/dst value into memory location specified in
addr. Bitsset in mask operand select bits to be modified in memory.

Initial value from memory is stored in src/dst. Memory read and write are
done atomically (i.e., other bus masters must be prevented from accessing
the word of memory containing the word specified with the src/dst operand
until operation completes). Memory location in addr is the modified
word’s first byte (LSB) address. Address is automatically aligned to a
word boundry.

Expansion: Pr ocessor Output
Cx, JX, Hx atnod addr, mask, src/ dst

8-9

i960® Processor Assembler User's Guide

bkpt_request

Request Breakpoint
Resources

Syntax

bkpt _request dst
reg

Discussion

Acquires breakpoint resource information. dst is set to indicate the
availableresources. The format of the breakpoint resources status word is
listed in Table 8-4.

Asaside effect, this pseudo-instruction may modify the condition code on
Some MiCroprocessors.

Expansion: Pr ocessor Output

JX, Hx | dconst 0x600, dst
sysctl dst, 0, dst

Table8-4. Breakpoint Resource Status Word Bits

Bits Use

31:8 reserved

7:4 # of available data breakpoints

3.0 # of available instruction breakpoints

8-10

Pseudo-instructions 8
bt, bf

Branch if false or
branch if true

bt branch if true
bf branch if false
Syntax
b* targ

di sp
Discussion

Both the bt (branch if true) and bf (branch if false) directives check the
condition code and branch to the location specified by t ar g based upon the
result of the test.

The assembl er recognizes the following correspondence:

Directive Instruction
bt (branch if true) bo (branch if ordered)
bf (branch if false) bno (branch if unordered)

The syntax for the two directivesis the same as the syntax for the
corresponding machine instructions.

Expansion: Condition Output
True bt targ
False bf targ

811

i960® Processor Assembler User's Guide

Example

The assembler changes the pseudo-instruction below to the instruction bo
process:

bt process

br<cc>

Branch on the result of a
floating-point
comparison

812

Pseudo-instructions

bre
brg
br ge
brl
brie
brig
bro
bru
brue
brug
bruge
brul
brul e

brul g

Syntax

br* targ
di sp

Discussion

branch red if equal

branch red if greater

branch real if greater or equal

branch real if less

branch red if less or equa

branch redl if less or greater

branch real if ordered

branch real if unordered

branch real if unordered equal

branch real if unordered greater
branch real if unordered greater or equa
branch real if unordered less

branch real if unordered less or equal
branch real if unordered less or greater

The branch real directives check the results of floating-point comparisons
and branch to the location specified by t ar g based upon the result of the
test. These instructions generate the appropriate compare instructions for

unordered cases.

Table 8-1 shows the correspondences between pseudo-instructions and

machine instructions.

Use the same syntax for pseudo-instructions you do for the corresponding

machine instructions.

8-13

i960® Processor Assembler User's Guide

Example

The assembler changes the pseudo-instruction below to the instruction bno
process:

bru process

callj, calljx
Optimizable linker calls

Syntax
callj targ
di sp

calljx targ

nmem

Discussion

Thecal Ij andcal | j x pseudo-instructions assembleacal | or cal | x
instruction, respectively, and arelocation entry instructing the linker to
perform call optimization, when possible. The linker can also be instructed
toignore call optimization. See the utilities user's guide for more
information about linker controls.

When the referenced procedure, represented by ¢ ar g, isa. | eaf pr oc, the

linker replaces the pseudo-instruction with a branch-and-link (bal or bal x)
instruction. When thetargetisa. syspr oc, the linker replaces the pseudo-
instruction with acal | s instruction.

8-14

Pseudo-instructions

For example, inserting acal | j x instruction while using the - AJD setting
might produce the following linker output depending upon whether the
target is adefault call, leaf procedure, or system call:

Expansion: Call Type Output
Default Call cal | x _target
Leaf Procedure | bal x _target, gl4
System Call | da _sysprocl ndex, g13
calls (gl3)

Sincecal I'j andcal | j x are optimized at link time, examination of the
object module generated by the assembler with the disassembler (dumper)
displays the assembled instruction asacal | instruction.

The assembler optimizescal I j orcal | j x tobal or bal x, respectively,
when the referenced procedure is a C language static function.

cal | j can be optimized during assembly when the target of thecal | j isin
the same object module and section asthe call site.

Example

This sample optimizes acall for procedure _subx.

callj _subx

Changes to the calljx Pseudo Instruction with the
1960 Rx Architecture

When used with the —-ARD -ARP, —~ARM Or -ARN option, callix usesthe
syntax:

calljx _target, tmpreg

where t npreg isalocal or global register. This change resultsin the
following sequences in the linker:

8-15

i960® Processor Assembler User's Guide

Expansion: Call Type Output

Default Call | da _target,tnpreg
call x (tnpreg)

Leaf Procedure | |da _target,tnpreg
bal x (tnpreg), gl4d

System Call | da _sysprocl ndex, g13
calls (gl3)

Notice that with the 80960Rx cal | j x format al three call typesresultin a
three-word instruction sequence, whereas the previouscal | j x format
reguires only two words.

Related Topics

bal .l eaf proc
bal x . Sysproc

8-16

Pseudo-instructions

cc_read
Read Condition Code
Syntax
cc_read dst
reg
Discussion
Copiesthe current value of the condition code into dst[2:0] and zeroesinto
dst[31:3].
Expansion: Pr ocessor Output
Cx nodac 0, O, dst
and dst, Ox7, dst
JX, Hx selg 0,1, dst

addoe 2, dst, dst
addol 4, dst, dst

8-17

i960® Processor Assembler User's Guide

8-18

cc_scanbit

Scan For Bit, Modifying
Condition Code

Syntax

cc_scanbit srcli, dst
reg/lit reg

Discussion

Searches srcl for aset bit (1 bit). If aset bit isfound, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
010,. If srcl value is zero, all 1's are storeddst and condition code is set

to 00Q.
Expansion: Pr ocessor Output
Cx, JX, Hx scanbit srcl, dst
cmp*<cc>
Branch to specified
target
cnpije compare integer and jump if equal
cnpijg compare integer and jump if greater
cnpi j ge compare integer and jump if greater or equal
cnpi j | compare integer and jump if less
crpijle compare integer and jump if less or equal
cnpi j ne compare integer and jump if not equal

Pseudo-instructions

Table 8-7

cnpi j no
cnpijo
cnpoj e
cpoj g
cnpoj ge
cnpoj |
cnpoj |l e

cnpoj ne

Syntax
cnpij* srcl,

reg/lit

cnpoj * srcli,

reg/lit

Discussion

compare integer and jump if not ordered
compare integer and jump if ordered
compare ordinal and jump if equal

compare ordinal and jump if greater
compare ordinal and jump if greater or equal
compare ordinal and jump if less

compare ordinal and jump if less or equal

compare ordinal and jump if less not equal

src2, targ

reg di sp

src2, targ

reg di sp

Both the integer and ordinal compare-and-jump directives check the results
of acomparison of the contents of the source operands and branch to the
location specified by t ar g based upon the resulting condition code (CC).
Shown below are the instructions assembled as a result of each of these
directives. The assembler recognizes the following correspondences:

Compare and Jump Substitutions

When Target is = 2" Bytes

Directive When Target is < 2 Bytes Away
cnpije cnpi be cnmpi + be
cnpijg cnpi bg cnpi + bg

8-19

i960® Processor Assembler User's Guide

8-20

cnpi j ge cnpi bge cnpi + bge
cnpijl cnpi bl cnpi + bl

cnpijle cnpi bl e cnpi + ble
cnpoj e cnpobe cnpo + be
cnpoj g cnpobg cnpo + bg
cnpoj ge cnpobge cnpo + hge
cnpoj | cnpobl cnpo + bl

cnpoj |l e cnpobl e cnpo + ble

As Table 8-7 shows, the assembler only generates a compare integer or
compare ordinal followed by a branch instruction when the destination is
2" bytes or more away.

Two pseudo-instructions never branch:
cnpi j no compare integer and jump if not ordered.

cnpoj no compare ordinal and jump if not ordered. The
equivalent instruction iscnpi bno.

Two pseudo-instructions always branch:
cnpijo compare integer and jump if ordered.

cnpoj o compare ordinal and jump if ordered. The
equivalent instruction is crpi bo.

Ordered relationships apply only to real numbers on 1960 processors with
on-chip floating-point capability. The branch instructions for ordered and
unordered numbers are consistent ways to provide null operations
(no-ops), when not used with floating-point values.

The syntax for these directives is the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

This sample pseudo-instruction uses compare and branch

Pseudo-instructions

cnpije r4, g4, process
During assembly, the pseudo-instruction becomes the following:

cnpi r4, g4
be process

821

i960® Processor Assembler User's Guide

dc_disable
Disable Data Cache

Syntax

dc_di sabl e dst
reg

Discussion

Disables use of the data cache. The data cache statusis returned in the dst
field. Theformat of the data cache statusword islisted in Table 8-8. For
Cx processors, dst is neither read nor set (i.e., no data cache statusis
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Pr ocessor Output
Cx setbit 30,sf2,sf2
nov g0, go
nov g0, go
JX, Hx dcctl 0,0,fp
dcctl 4,0, dst

Table 8-8. Data Cache Status Word Bits

Bits Use

31:28 reserved

27:16 # of ways-1
15:12 log,(# of sets)
11:8 log,(atoms/line)
7:4 log,(bytes/atom)
31 reserved

8-22

Pseudo-instructions

0 1 = data cache enabled
0 = data cache disabled

dc_enable
Enable Data Cache
Syntax
dc_enabl e dst
reg
Discussion

Enables use of the data cache. The data cache status is returned in the dst
field. Theformat of the data cache status word islisted in Table 8-8. For
Cx processors, dst is neither read nor set (i.e., no data cache statusis
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Pr ocessor Output
Cx clrbit 30,sf2,sf2
JX, Hx dcctl 1,0,fp
dcctl 4,0, dst

8-23

i960® Processor Assembler User's Guide

dc_invalidate
Invalidate Data Cache

Syntax

dc_invalidate dst
reg

Discussion

Invalidates the data cache. The data cache statusis returned in the dst
field. Theformat of the data cache statusword islisted in Table 8-8. For
Cx processors, dst is neither read nor set (i.e., no data cache statusis
returned). Since the CA processor has no data cache, this operation has no
effect on that processor.

Expansion: Pr ocessor Output
Cx sethit 31,sf2,sf2
nov g0, go
nov g0, go
X, HX dcctl 2,0,fp
dcctl 4,0, dst

8-24

Pseudo-instructions

em_read
Read Execution Mode

Syntax

emread

Discussion

If the processor is currently in user mode, setsdst to 0. If the processor is

dst
reg

currently in supervisor mode, sets dst to 1.

Expansion:

Pr ocessor

Output

Cx, XX, Hx

nmodpc dst, 0, dst
shro 1, dst, dst
and 0x1, dst, dst

8-25

i960® Processor Assembler User's Guide

faultf, faultt

Fault if false or fault if
true

Syntax

faul t*

Discussion

Thefaul tt (faultif true) andf aul tf (fault if false) directivesraise afault
condition based upon atest of the condition code.

The assembler recognizes the following correspondence:

Expansion: Condition Output
True faulto
False faul t no

The syntax for the two directivesis the same as the syntax for the
corresponding machine instructions in the core architecture.

Example

The following pseudo-instruction becomesf aul t nof during assembly:
faul tf

8-26

Pseudo-instructions

ic_disable
Disable Instruction
Cache
Syntax
i c_disable dst
reg
Discussion

Disables use of the instruction cache. The instruction cache statusis
returned in the dst field. The format of the instruction cache status word is
listed in Table 8-9.

Expansion: Pr ocessor Output

Cx | dconst 0x0201, dst
sysctl dst,0,0

| dconst 0x11230, dst
JX, HX icctl 0,0,fp
icctl 4,0, dst

Table 8-9. Instruction Cache Status Word Bits

Bits Use

31:28 reserved

27:16 # of ways-1

15:12 log,(# of sets)

11:8 log,(atoms/line)

7:4 log,(bytes/atom)

31 reserved

0 1 = instruction cache enabled

0 = instruction cache disabled

8-27

i960® Processor Assembler User's Guide

ic_enable
Enable Instruction
Cache
Syntax
i c_enabl e dst
reg
Discussion

Enables use of the instruction cache. The instruction cache statusis
returned in the dst field. The format of the instruction cache status word is
listed in Table 8-9.

Expansion: Pr ocessor Output

Cx | dconst 0x0200, dst
sysctl dst,0,0
| dconst 0x11231, dst

JX, Hx icctl 1,0,fp
icctl 4,0, dst

8-28

Pseudo-instructions

ic_invalidate

Invalidate Instruction
Cache

Syntax

ic_invalidate dst
reg

Discussion

Invalidates the instruction cache. The instruction cache status is returned
inthe dst field. Bit zero of dst isaways set to 1 for Cx processors, even if
the instruction cache isdisabled. The format of the instruction cache status
word islisted in Table 8-9.

Expansion: Pr ocessor Output
Cx | dconst 0x0100, dst
sysctl dst,0,0
| dconst 0x11231, dst
JX, HX icctl 2,0,fp
icctl 4,0, dst

8-29

i960® Processor Assembler User's Guide

ic_load _lock

Load and Lock
Instruction Cache

Syntax

i c_load_l ock addr, src/dst
reg reg

Discussion

Loads src/dst blocks into the instruction cache from addr. Locks the
affected region of the instruction cache.

Expansion: Pr ocessor Output

JX, Hx icctl 3, addr, src/dst

8-30

Pseudo-instructions

insn_trace_mode_read

Read Instruction Trace
Mode

Setsdst to 1 if instruction trace mode is enabled, and O if instruction trace

Syntax
i nsn_trace_node_read dst
reg
Discussion
mode is disabled.
Expansion: Pr ocessor

Output

Cx, XX, Hx

nodtc O, O, dst
shro 1, dst, dst
and 0Ox1, dst, dst

8-31

i960® Processor Assembler User's Guide

insn_trace_mode_set

et Instruction Trace
Mode

Syntax

i nsn_trace_node_set src/dst
reg

Discussion

If sra/dst[Q] is 1, enablesinstruction trace mode. Otherwise, disables
instruction trace mode. src/dst is set to 1 if instruction trace mode was
initially enabled and 0 if it wasinitially disabled.

Expansion: Pr ocessor Output

Cx, JX, Hx shlo 1, src/dst, src/dst
nmodt ¢ O0x2, src/dst, src/dst
shro 1, src/dst, src/dst
and 0x1, src/dst, src/ dst
nov g0, g0

nov g0, g0

8-32

Pseudo-instructions

interrupt_state
Read Interrupt Sate

Syntax
interrupt_state dst
reg
Discussion
Setsdst to 1 if interrupts are enabled and to 0 if they are disabled.
Expansion: Pr ocessor Output
X, HX intctl 2, dst

ip_read
Read Instruction Pointer

Syntax
i p_read dst
reg
Discussion
Sets dst to the run-time address of the next instruction.
Expansion: Pr ocessor Output
Cx, Jx, Hx I da (ip), dst

8-33

i960® Processor Assembler User's Guide

ldconst
Load constant

Syntax

| dconst src, dst
lit32 reg

Discussion

Immediate values that cannot be expressed as literals must be explicitly
loaded into aregister before they can be used as operands for machine
instructions. For integer and ordinal operands, this loading can be done
with thel dconst directive.

The assembler selects the most efficient instruction available to place the
valuein the register. Thisinstruction can be amove, add, subtract, shift, or
load address, depending on the value of src.

Expansion: Valueof src Output
-1 through -31 subo src, 0, dst
0-31 mov src, dst
32-62 addo 31, src - 31, dst
a’ shlo b, a, dst
default | da src, dst

"0<=a<=31,0<=b<=31,ad<2*

instruction (in the object module) substitutes for thel dconst directive
specified in the sourcefile. To determine what is assembled, display the
instruction in the object module with the disassembler (dumper).

[/& NOTE. Thelisting file generated by the assembler does not indicate what

Pseudo-instructions

Example

In the following lines, you can see some of the various ways to load
constants with this pseudo-instruction:

| dconst and assenbl ed instruction

| dconst 0, g5 /* mov 0,95 */

| dconst 31, @5 /* mov 31,95 */

I dconst 32, g5 /* addo 1,31, g5 */
addr:

| dconst 62, g5 /* addo 31,31, g5 */

| dconst 3<<8, g5 /* shlo 8,3,95 */

| dconst 0x1234, g5 /* |l da 0x1234, g5 */

I dconst -1, @5 /* subo 1,0,95 */

| dconst -31, g5 /* subo 31,0,95 */

| dconst addr, g5 /* lda addr, g5 */

pri_read
Read Execution Priority

Syntax
pri_read dst
reg
Discussion
Copies the current execution priority into dst[4:0] and zeroes into
dst[31:5].
Expansion: Pr ocessor Output

Cx, JX, Hx nmodpc dst, 0, dst
shro 16, dst, dst
and Ox1f, dst, dst

8-35

i960® Processor Assembler User's Guide

8-36

Sw_reinit
Reinitialize Processor

Expansion:

Syntax

swreinit

Discussion

new_ i p, new_ PRCB
reg reg

Re-initialize the processor, using new_PRCB as the new process control
block. Continues execution after re-initialization beginning at the address

found in new_ip.

Pr ocessor

Output

Cx, XX, Hx

| dconst 0x0300, SCRATCH

sysctl SCRATCH, new i p, new_PRCB

SCRATCH i s any register except new.ip
or new PRCB.

Pseudo-instructions

trace_enable_set
Set Trace Enable Bit

Syntax

trace_enabl e_set

Discussion

src/dst

reg

Sets trace enabl e bit based on value of src/dst[0]. Setssrc/dstto 1if
tracing was previously enabled or 0 if it was disabled.

Expansion:

Pr ocessor

Output

Cx, XX, Hx

nmodpc
and

src/dst, 0x1, src/ dst
src/dst, 0x1, src/dst

8-37

Example Programs

This chapter contains sample code, in two sections. The examplesin the

first section use the core instructions, and those in the second section use
floating-point instructions. See the processor user’'s manuals for complete
lists of the instructions supported by each i960® processor.

Note that the code shown in this chapter has not been tested on the current
version of the assembler toolset. Therefore it is shown for general learning
purposes only, and is not provided on the distribution media.

Examples Using the Core Instruction Set

The examples in this section use the core instructions described in
Chapter 8. The example programs show:

Code to enable interrupts to the 1960 processor from an 8259A
Programmable Interrupt Controller.

Sending a breakpoint IAC message to the processor using an assembly
language block in a C routine.

Performing a bitblt code routine.

Matrix multiplication with core instructions only.

C-style string comparisons speed-optimized for a K-series 1960
processor.

9-1

i960® Processor Assembler User's Guide

9-2

Enable and Count Interrupts From 8259A

The following source code shows how to initialize an 8259A
Programmable Interrupt Controller to interrupt the i960 processor. The
routine counts the number of interrupts generated.

[xxxx Enabl e Interrupts *rxx |

.globl _enable_ints

_enabl e_ints:
Ida cr0O_address, r3 /* cntrl stat reg addr */
ldos (r3), r4 /* crOis a 16 bit reg */
lda Oxff7f, r5 /* mask for enints# bit */
and rb5, r4, r4 /* set enints# bit |ow */
stos r4, (r3)
ret

/* NOTE:the EXV conpl enents and rotates the data bus */
/[* left 3 bits. This is conpensated for in 8259 read */
/* and wite routines. The bits below are those that */

/* 8259 nust see. */
/* ___ */
/* Initialize the 8259 */
/* ___ */

.globl _init_8259
_init_8250:

/* Wite ICWM: ICWM req., 1 8259 level triggered */
lda |CWM_ADR, g0
|da | OWL_DATA, g1l
call _wite_8259

/* Wite | CW: Vector base of 08 */
lda | CW2_ADR, g0
|da | CW2_DATA, gl
call _wite_8259

/* Wite |CWM: 86/88 npde, normal EOQ, non-buffered
not special fully nested */

lda | CM-ADR, g0

lda | QM- DATA, gl

call _wite_8259

Example Programs

/* Wite OCWL, this is the interrupt mask register, a 0 in
a bit inthis register neans that the interrupt is
enabl ed. */

| da OCWL_ADR, g0

| da OCWL_DATA, gl

call _wite_ 8259

ret
52 * [
/* WRI TE 8259 ROUTI NE */
2 * [

/* Wite_8259 routine. Pass 8259 port address in g0 and
the data as it should appear to the 8259 in the | ower byte
of gl. This routine will invert and rotate the data
wite it to the 8259 and pause so that any subsequent
accesses to the 8259 will not violate the recovery tine.

*/

write 8259:
| da 0x000000ff, r3 /* mask to clear bytes 1,2,3 */
and r3, gl, g1
shlo 03, g1, 91 /* shift data left 3 bits. */
| da 0x00000700, r3 /* mask all bits but 8,9,10 */
and r3, gl, r3 /* bits 8,9,10 becone bits 0,1,2 */
shro 08, r3, r3 /* shift bits down to byte 0 */
or r3,91, g1 /* combine upper 5 bits in gl */
not g1, gl /* invert data */
stob g1, (g0) /* wite byte to the 8259 */
bal waiting_|oop /* wait so 8259 recovery tine

guar anteed */

ret

.globl _wite_count

_wWrite_count:
I da cra_address, r3
|da Ox2a, r4
stob r4, (r3)
bal waiting_| oop

I da cra_address, r3
|da O0x3a, r4

stob r4, (r3)

bal waiting_| oop

i960® Processor Assembler User's Guide

94

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

| da
| da
st ob
bal

cra_address,
Oxla, r4

r4, (r3)
wai ting_l oop
nT a_addr ess,
0x02, r4

r4, (r3)
wai ting_l oop

nr b_addr ess,
0x07, r4

r4, (r3)
wai ting_l oop

crb_address,
Ox2a, r4

r4, (r3)
wai ting_l oop

crb_address,
Ox3a, r4

r4, (r3)
wai ting_l oop

crb_address,
Oxla,r4

r4, (r3)
wai ting_l oop

nT a_addr ess,
0x02, r4

r4, (r3)
wai ting_l oop

nr b_addr ess,
0x07, r4

r4, (r3)
wai ting_l oop

sra_address,
Oxbb, r4

r4, (r3)
wai ting_l oop

r3

r3

r3

r3

r3

r3

r3

r3

r3

Example Programs

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st ob
ba

| da
| da
st

ret

| *
Wi t
*/

srb_address, r3
Oxbb, r4

r4, (r3)
wai ting_l oop

i nput _port _address

oxf4, r4

r4, (r3)
wai ting_l oop
acr_address, r3
oxf0, r4

r4, (r3)
wai ting_|l oop

imr_address, r3
0x44, r4

r4, (r3)
wai ting_l oop

ctur_address, r3

ctur_data, r4
r4, (r3)

wai ting_l oop

ctlr_address, r3

ctlr_data, r4
r4, (r3)

wai ting_l oop

cra_address, r3
0x05, r4

r4, (r3)
wai ting_l oop

r3

CLOCK_ADR, r3 /* zero out clock count */

0, r4
r4, (r3)

| oop required after each access to DUART registers.

9-5

i960® Processor Assembler User's Guide

9-6

wai ting_| oop
Ida srO_address, r8 /[* BST
DUART recovery tine */

wai ting_| oopl
ldob (r8), r8
bx (gl 4) /* bal
#i nclude "fractal . h"
#include "ints.h"
#i ncl ude "np_system h"

. text
.globl _clock_int
_clock_int:

nov gl4, rl4 /* save ba

Ida cr0O_address, r3
ldos (r3), r4

Ida 0x20, r5

or rd4, r5, r4

stos r4, (r3)

/* update clock */

|l da CLOCK ADR, r6
atadd r6, 1, r7
bal waiting_|oop

not r5, r5
and r5, r4, r4
stos r4, (r3)

/*

access;

return */

check clock, if time is 1 second, then signal

*/

| da SECONDS DI VIDE, r10
nodi r10, r7, r7
cnpibne 0, r7, cont_here

Ida Oxffffffff,r7
Ida 8(r6), rl1o0
|lda 24(r6), r8

register */

sonebody

stl r10, 24(r6) /* store to previous answer */

subc r8, r10, r8
subc r9, rl11, r9

Example Programs

Idl 16(r6), rl1o0

Idl 32(r6), r4

stl r10, 32(r6) /* store to previous answer */
subc r4, ri10, r4

subc r5, ri11, r5

addc r4, r8, r4

addc r5, r9, r5

/* do the fp shuffle --- */

nmovrl fp3, r8
cvtilr r4, fp3
nmovrl fp3, r4

| da 40,r11
addo r11, r6, ri1
atnmod r11, r7, r4 [/* cunulate idle tinme */

nmovrl r8, fp3
|da 44, ril1

addo r11, r6, rill

atnmod r11, r7, r5 [/* cunulate idle tinme */
| da CLOCK PORT, r10

signal r10

/* acknow edge to 8259 that all is well */

cont _here:
| da ADJUSTED EQ, r4
lda OCW2_ADR, r5
stob r4, rb5)
mov rl4, gl4
ret

wai ting_| oop
I da sr0O_address, r8

wai ting_|l oopl:
ldob (r8), r8
bx (gl4)

.globl _no_int
_no_int:
| da BASE_ADR, r5
| da ADJUSTED EOQ, r4
stob r4, (r5)
ret

9-7

i960® Processor Assembler User's Guide

9-8

Figure 9-1

Send an IAC to the Processor

Although written in the C language, this source listing includes an ASM
block that actually sends a breakpoint | AC to the processor. The code
assumes that breakpoint trace mode is set in the trace controls word and
that the trace enable flag of the process controls word is also set.

Figure 9-1 shows the format of the data structure used in the program.

IAC Message Structure

Message Format

31 24 23 16 15 0
L T T

Message Type Field 1 Field 2

T T T T T T
Field 3

T L —
Field 4

Field 5

A6282-01

/* iac structure */

struct x iac_msg {
unsi gned short field2;
unsi gned char fieldl;
unsi gned char nmessage_t ype;
unsigned int field3;
unsigned int field4;
unsigned int field5;

} iac_struct;

/* This routine issues an | AC nessage to the |ocal
processor on which the programresides. |t accepts a
pointer to a preformed | AC message as input, and uses the
synnovqg instruction to send the AC to the processor. */

asm send_i ac (struct iac_nmsg * base_nsQ)

{
%eglit base_nsg; tnpreg nyreg;

Example Programs

| da Oxff000010, nyreg /* load |local I|IAC address */
synnmovqg nyreg, base_nsg
/* issue | AC nessage */

%error;
}
/**/
/* Send a breakpoint IAC to the processor */
/* */
/* (don’t forget to turn on breakpoints in the */
/* trace control register) */

/**l

set _breakpt (addr1, addr?2)
unsi gned i nt addrl;
unsi gned i nt addr?2;

{
iac_struct.message_type = 0x8f;
iac_struct.field3 = addr1i;
iac_struct.field4 = addr?2;
send_i ac(& ac_struct);

}

Perform a BitBlt Operation

The following example shows abi t bl t code routine. Thetypical size of a

character stored in memory is 32 x 40 bits. Optimization techniques

include:

» use of theldconst pseudo-instruction

e useof Idg and stq to move data blocks

* register bypassing for the or instructions within the loop

* instructions are placed between compare-and-branch; the branch
instruction therefore uses O clocks

» register loading is done before the datais actually used; other
instructions are executed while waiting for the load

9-9

i960® Processor Assembler User's Guide

9-10

. text
.globl _main

_mai n:
Ida 0x30000
Ida 0x40000

| dconst 7, r6
divi 4, r6, r
nmodi 4, r6, r
| dconst 4, r8
ldg (r4), g0
addi 0x10, r4
| dconst 32, r
subo r8, r9

| dconst 0, g4

cnpibge 0, r7

| oop:

shro r9, g4
shlo r8, g0
or g5, g6, g8
shro r9, g0
shlo r8, g1
or gl2, gl3,
shro r9, g1
shlo r8, g2
or 913, rl4,
shro r9, g2
shlo r8, g3
mov g3, g4
ldqg (r4), g0

Si

or g7, 9gli, ¢
addi 0x10, r4

subi 1, r7, r
cnmpi 0, r7
stq g8, (rb)
addi 0x10, r5
bl | oop

cnpibge 0, r6
ngl e
subi Oxc, r4,

ra
rs

7
6

, r4a

9
ro

/* source address in r4 */

/* destination address in r5 */
/* word count in r6 */

/* quad count in r7 */

/* remmi nder word count in r6 */
/* offset inr8 */

/* increment source addr 4 words */

/* 32 - offset */
/* clear g4 for carry in */

, single

g5
g6

gl2
gl3
g9

gl3
rl4
glo
g7

gl1

11

, ra

7

, IS5

, end

ra

/* no quad words junp to single */

/* shift carry rt. by 32-offset */
/* shift srcl left by offset */

/* conbi ne */

/* shift srcl right by 32-offset */
/* shift src2 left by offset */

/* conbi ne */

/* shift src2 right by 32-offset */
/* shift src3 left by offset */

/* conbi ne */

/* shift src3 right 32-offset */

/* shift src4 left by offset */

/* save src 4 for carry in */

/* start next |oad */

/* conbi ne */

/* increment src addr by 4 words */
/* decrenent quad count */

/* test if done */

/* store 4 words in dest */

/* increnent dest addr 4 words */
/* if not done |oop back */

/* if no remainder junp to end */

/* get rid of extra | oads */

Example Programs

cont:
shro r9, g4, g5 /* shift carry right by 32-offset */
nov g0, g4 /* save src for carry in */
shlo r8, g0, g6 /* shift src left by offset */
Id (r4), g0 /* start next |oad */
addi Ox4, r4, r4 /* increnent src addr */
or g5, g6, rl4 /* conbi ne */
subi 1, r6, r6 /* decrenent renaminder */
cmpi 0, ré6 /* test if done */
st rl4, (rb5) /* store word in dest */
addi Ox4, r5, r5 /* increnent dest addr */
bl cont /* if not done | oop back */
end: ret
fmar k

.word 0x00000000
.word 0x00000000
Perform Matrix Multiplication

The following example shows an optimized version of a1 x 3 matrix
multiply, using only ordinal and integer arithmetic.

/*
g7 i nput i nage vector pt
g3 out put sum
ri2 out put line vector pt
g0-2 all, al2, al3 (kernel)
g4-6 a2l, a22, a23
g8-10 a31, a32, a33
r8-10 i1,i2,i3 (i nput inmage vector)
*/
. text
.globl _fast3x3
_fast 3x3
nov g0, r8 /* 3x3 vector */
nov gl, g7 /* inmage pointer */
subo 1, g2, r3 /* image size */
nov g3, rl2 /* output vector point */
ldt (r8), g0 /* input 3x3 kernel */

ldt 16(r8), g4
ldt 32(r8), g8

9-11

i960® Processor Assembler User's Guide

.l oopl:

ldob (g7), r8 /* load in image and convol ve */
xor g3, g3, g3

muli r8, g0, g3

ldob 1(g7), r9

muli r9, gil, r4

addi r4, g3, g3

| dob 2(g7), rlo

muli r10, g2, r4

addi r4, g3, g3

| dob 640(g7), r8
muli r8, g4, r4
addi r4, g3, g3
| dob 641(g7), r9
muli r9, g5, r4
addi r4, g3, g3
| dob 642(g7), r10
muli r10, g6, r4
addi r4, g3, g3

| dob 1280(g7), r8
muli r8, g8, r4
addi r4, g3, g3
| dob 1281(g7), r9
muli r9, g9, r4
addi r4, g3, g3
| dob 1282(g7), rl10
muli r10, gl10, r4
addi r4, g3, g3

addo 1, g7, g7 /* increnent image pointer */
addo 1, r12, r12 /* increnent output line pointer */
cmpi 0, g3 /* if sum< 0, sum= 0 */
ble cont
lda 0, g3
cont:

stob g3, (rl12)
cnpdeco 0, r3, r3
bl .loopl

ret

9-12

Example Programs

Compare Strings

The following subroutine compares two C-style null-terminated strings and
returns an indication of the outcome of the comparison. The application
uses the scanbyt e instruction to search for the null string terminator.

.globl _strcnp
.leafproc _strcnp, __strcnp

.align 2
.rett:
ret
_strcnp:
lda .rett,gl4
__strcnp
ld (g0), g5 # fetch first word of source_1
nov gl4, g7 # preserve return address
I dconst 0, gl14 # conformto register conventions
I dconst Oxff,g4 # byte extraction nask
. W oop:
addo 4,g0,g0 # post-increnent source_1 byte ptr
ld (gl), g3 # fetch word of source_2
scanbyte 0,95 # does word have a null byte?
mov g5, g2 # save a copy of the source_1 word
be .cloop # branch if null byte encountered
cnpo 92,93 # are the source words the sane?
addo 4,gl,gl1 # post-increnent source_2 byte ptr
Id (g0), g5 # fetch ahead next word of source_1
be .w oop # fall thru if words are unequa
.cloop

and 04,902,095 # extract and conpare individual bytes
and g4, g3, g6
cnpobne g5,96,.diff # if they diff, go return 1 or -1

cnmpo 0, g6 # they are the same. Are they null?
shlo 8,94,94 # position mask for next extraction
bne .cloop # loop if null not encountered

9-13

i960® Processor Assembler User's Guide

9-14

nmov 0,90 # return equality

bx (9g7)
Ldi ff:

bl . neg

mov 1, g0

bx (9g7)
. neg:

subi 1,0,90
.exit:

bx (97)

Examples Using Floating-point Instructions

The examples in this section use the on-chip humerics instructions
described in Chapter 8. The examples show:

« code optimization by reordering

» matrix multiplication with real arithmetic

¢ basic numerics operations using load, move, and store

* exponentiate with arbitrary exponent using rounding and scaling
e rectangular to polar conversions using trigonometric functions

» acdl to thefault handler

Optimize a Numerics Application

This example shows two programs. The second, _t est f ast, isa
speed-optimized version of thefirst routine, _t est sl ow.

. text
.align 4
.globl _testslow

_testsl ow
| dconst 999999, g3
mov g0, gl3 # | oad address pointer
nov gl, ri2 # | oad address pointer
Idconst O, r3 # store |oop counter
Idl (gl3),r14
Idl three_point_four,rl0

Example Programs

| oop_begin

ldl (gl1l3), rl14
mulrl r14, r10, r8
stl r8, (r12)

Idl 8(gl3),r6
mulrl r6, rl0, r4
stl r4, 8(rl2)
addo 1,r3,r3

cmpi r3,g3

ble |oop_begin

ret

.data
.align 4
t hree_poi nt _four
#
below value is 3.4 in 64 bit real format
#
.word 858993459
.word 1074475827
. text
.align 4
.globl _testfast
_testfast:
| dconst 999999, ¢3
nov g0, gl3 # | oad address pointer
nmov gl, rl4 # |l oad address pointer
| dconst 0, r3 # store |oop counter
ldl (gl1l3),r12
Idl three_point_four,r10

| oop_begin

Idl 8(gl3), r4
mulrl r10, rl12, r8
stl r8, (ri14)

mulrl r4, ri10, r6
stl r6, 8(rl4)

ldl (gl1l3), r12
addo 1,r3, r3

cnmpi r3, g3
bl e | oop_begin
ret

9-15

i960® Processor Assembler User's Guide

9-16

.data
.align 4
t hree_poi nt _four
#
below value is 3.4 in 64 bit real fornmat
#

.word 858993459
.word 1074475827

Perform Matrix Multiplication

The following source code shows an optimized version of a1 x 4 matrix
multiply routine using real-valued arithmetic. The C program in the
example sets up a sample matrix and uses the C version of the matrix
multiply. Compare the C and assembly language versions.

Assembly Code
/*
r3 no. of vectors
g7 input vector pt
g3 output vector pt
g0-2 all,al2, al3, al4
g4-6 a2l, a22,a23,a24
g8-10 a31, a32, a33, a34
ra-7 adl,ad2,a43,a44 |/ translation vectors /
r8-11 i1,i2,i3,i4 /input vector/
ri2-15 o1, 02,03, 04 / out put vector/

fast 1x4 does translation and rotation of the
i mage supplied
*/

. text

.globl _fastix4

_fastix4
nmov ¢g0,r8 /* 4x4 vector */
subo 1,92,r3 /* image size */
nmovrl g4,fp0 /* translate x */
nmovr fpO,r4
nmovrl g6,fp0 /* translate y */

Example Programs

novr

novr |

nmovr
nov
| dt
| dt
| dt

nov

. 1 oop:
| dt

mul r
mul r
addr
mul r
addr
addr

mul r
mul r
addr
mul r
addr
addr

mul r
mul r
addr
mul r
addr
addr

stt
addo
addo

fpo,r5

g8,fp0 /* translate z */
fp0,r6
gl, g7 /* inmage pointer */
(r8), g0
16(r8), g4
32(r8), g8

ra,r4

(g7),r8

r8, go, fpo
ro, g4, fpl
fpl, fpO, fpo
ri0, g8, fpl
fpl, fpO, fpo
r4, fp0, ril2

r8, gl, fp2
r9, gb, fp3
fp3, fp2, fp2
r10, g9, fp3
fp3, fp2, fp2
r5, fp2, ri3

r8, g2, fpo
ro, g6, fpl
fpl, fpO, fpo
r10, gl10, fpl
fpl, fpO, fpo
r6, fpo, ri4

ri2, (g3)
12, g3, g3
12, g7, g7

cnpdeco 0, r3, r3

b

ret

| oop

9-17

i960® Processor Assembler User's Guide

C Code

#i ncl ude <stdio. h>

main ()

{

static float a[4][4] = {
{0.0, 0.1, 0.2, 0.3},
{1.0, 1.1, 1.2, 1.3},
{2.0, 2.1, 2.2, 2.3},
{3.0, 3.1, 3.2, 3.3}};

static float b[4] {0.0, 0.1, 0.2, O0.3};
float c[4];

fastix4(a, b, c);

}

/**/
[* FAST1X4 */
/* outer loop is the index for each colum */
[* of the kernel * [
/* */

/* inner loop is the index for each row of */
/* the kernel, and the index for the source */

/* matrix */
/* */
/* results are stored in a 1x4 matrix */
/* */
/[* input: kernel - 4x4 matrix */
/* source - 1x4 matrix */
/* */
/* output: dest - 1x4 matrix */

/**/

fast 1x4 (kernel, source, dest)
float kernel [4][4];

float source[];

float dest[];

Lo

int i,j;

float tenp;

9-18

Example Programs

for (i=0; i<=3; i++) {
temp = 0.0

for (j=0; j<=3; j++) {

tenp += source[j] * kernel[j][i];
}
dest[i] = tenp;

Perform Basic Numerics Operations

This example represents a source code fragment that does many of the
basic numerics operations.

Assume: srcl = 32-bit real value in nenory
src2 = 96-bit extended rea
dst uninitialized in .bss section
(all should be appropriately aligned)
Id srcl, go # |l oad 32-bit real
ldt src2, g4 # load 96-bit extended rea
nmovr g0, fpO # convert 32 to 80-bit
cpysre fp2, g4, fp3 # copy sign
nmovrl fp3, g0 # convert 80 to 64-bit rea
stl g0, dst # store dual register |long

Exponentiate With an Arbitrary Exponent

This example shows an assembly language code fragment to handle
exponentiation with an arbitrary exponent.

Assune register g0 = real exponent
roundr g0, fpO # fp0 = integer part
subr fp0O, g0, g0 # g0 = fractional part
expr g0, g0 # g0 = 27g0 - 1
addr 1.0, g0, g0 # conpensate for -1
cvtri fp0, gl g0 # exponentiate integer
#

and scal e result

9-19

i960® Processor Assembler User's Guide

Convert Between Coordinate Systems

This source code fragment converts from a rectangular to a polar
coordinate system and vice-versa. These routines use several of thered
arithmetic and trigonometric functions.

Rectangul ar to pol ar conversion
Assume x, y are 64-bit reals in nmenory
r, theta are quad-aligned 96-bit |ocations

rect _to_pol ar:
ldl x, g0
Idl y, g2
atanrl g0, g2, fpoO
mulrl g0, g0, g0 square X
mulrl g2, g2, g2 square y

load x coordinate
#
#
#
#
addrl g0, g2, g4 # g4 = x"2 + yn2
#
#
#
#
#

| oad y coordinate
fpO0 = arctan y/x

sqgrtrl g4, fpl fpl = sqrt g4

movre fpO, @8 convert theta to 96-bit
novre fpl, gl2 convert r to 96-bit

stt g8, theta store extended angle
stt gl2, r store extended radius
ret

#

Pol ar to rectangul ar conversion

Assume:

r, theta quad-aligned 64-bit real values

x, y are 96-bit locations in nmenory

pol ar _to_rect:
Idl r, g0 # | oad radius
Idl theta, g2 # | oad angl e
cosrl g0, fpoO # fp0 = cos theta
sinrl g0, fpl # fpl = sin theta
mulrl fp0O, g0, fpO # fpO =r cos theta
mulrl fpl, g0, fpl # fpl =r sin theta
movre fpO, @8 # convert x to 96-bit
movre fpl, gl2 # convert y to 96-bit
stt g8, x # store extended Xx
stt gl2, y # store extended y

ret

9-20

Example Programs

Figure 9-2

Retrieve Fault Record Pointer

The following routine demonstrates how to retrieve the fault record from

the stack after a floating-point fault has occurred. The fault handler calls
this routine immediately after the fault is signaled. The routine continues
execution at the point of interruption afterwards.

The procedurer et ur n_f aul t _pt r returns the information caused by a

fault to the programmer, as follows:

e The procedure returns a pointer to the fault record.

» The procedure copies al global/local registers at the time of the fault
into aglobal structure. Thisstructureisan array of 32 unsigned
integers, which contain g0 through g15 and r0 through r15. Usea
global structure to avoid passing parameters and corrupting the
registers. The programmer assumes that this routine is called directly
by the fault handler so it uses that knowledge to unwind the stack.

e Thestack providesthe linkage that you use to find the fault data, as
shown in Figure 9-2.

Stack For Fault Handler

Fault Data

Fault Handler PFP

The Procedure

0OSD1136

9-21

i960® Processor Assembler User's Guide

.globl _return_fau
_return_fault_ptr:

| da 0x001f 0000, r8

| da 0x001f 0001, r9

nodpc r8, r9, r8

flushreg

I da _register_set,

stq g0, (rb)

stq g4, 16(rb5)

stqg g8, 32(rb5)

stq gl2, 48(rb)

Ida OxffffffcO, ri13

Id (pfp), r6

and r6, ri13, r6

| dq (r6), r8

stq r8, 64(rb5)

| dq 16(r6), r8

stq r8, 80(rb5)

| dq 32(r6), r8

stq r8, 96(rb5)

| dq 48(r6), r8

stq r8, 112(r5)

| dconst 48, r3

subo r3, pfp, g0

ldg 32(g0), r8

stl r8, 128(rb)

st rll, 136(rb5)

| dconst Oxffffffff,

| dconst 0, rl14

nodtc r13, rl14, rl4

st rl4, 140(rb5)

ret

.globl _begin
_begin:

| dconst _register_s

| dconst Oxffffffff,

Id 140(r5), rl14

nodtc r6, ril4, ri14

9-22

It _ptr

| oad pc mask

| oad pc mask

set priority to MAX
to avoid interrupts
make stack current

H* oH H H

rs

H*

store gl obal registers

PFP mask

chai n back past previous cal
mask of f return bits

| oad | ocal registers

store local registers

| oad | ocal registers

store local registers

| oad | ocal registers

store local registers

| oad | ocal registers

store local registers

|l ength of fault record
store start of fault to go
get pc, ac, ip

store pc, ac

store ip

| oad nmsk

turn off tracing in nonitor
get old trace controls

and store to nenory

and return it to handler

HHHFHHF HFHEIFHRFHFHRHH OB

rl3

* B B

et, r5

r6 # |load mask
| oad programtrace
set trace controls

Example Programs

| dconst 1, r7 # load bit

nmodpc r7, r7, r7 # and restore

callx (g0) # vector off to routine
ret # shoul d never return

but just in case

.globl _continue_execution
_continue_execution:

call restore_state

ret # return to procedure

restore_state:

flushreg # make stack current

AND.. Invalidate cache
lda _register_set, r5
Id 60(r5), ri15 # get frame ptr

lda Oxffffffff, r6 # |oad nask

ld 132(r5), r7 # bring in stored ac
nodac r6, r7, r7 # and restore

st g0, 8(r15) # store ip in return ptr
ldg (r5), g0 # load 1st 4 globals
ldq 16(r5), g4 # |l oad next 4 globals
ldg 32(r5), g8 # | oad next 4 globals
ldq 48(r5), gl2 # and restore

ret

.data
.globl _register_set

_register_set:
. space 160 # reserve storage for registers

9-23

Glossary

absolute expression

absolute value

address space

addressing modes

alignment (memory)

alignment (register)

ASCII-coded decimal

assembler directive

A valid assembly language symbol or expression that, when
evaluated, produces a value that does not change with

relocation at link time,
A fixed number directly calculated by the assembler and

used in the assembly. Absolute values can be used in
assembly language expressions.

The range of addresses available to a process.

Methods available for instructions to specify a memory
address as an operand. The range of addressing modes for
each instruction depends on the instruction type.

The alocation of datain memory relative to appropriate
boundaries for efficient processing. For example, data words
(4 bytes) must be located at memory addresses divisible by

4,

When a single instruction accesses a dual -register group, the
register specified in the instruction must be even numbered
(e.g. g0, r2,g6). If aninstruction accesses atriple- or
guad-register group, the number of the register specified
must be a multiple of four (e.g. go, g4, r 8).

A dataword containing adecimal digit (0 - 9) encoded in the
four low-order bits.

A source code statement that indicates assembly information
other than machine instructions to the assembler (e.g., debug
information and data entries).

Glossary-1

i960® Processor Assembler User's Guide

big-endian architecture

bit field
burst access

calling convention

COFF (Common Object
File Format)

comparand

condition code

core architecture

directive

double-word

Glossary-2

The bytes follow aleft-to-right order from the most
significant bit to least significant bit (example: HP 9000
Series 300 workstations).

A contiguous series of up to 31 bitsin a data word, specified
by the starting bit position and field length.

A technique that allows the processor to execute multiple
data cycles after asingle address cycle.

The set of instructions inserted in the object code by a
language processor to handle parameter passing, stack and
register use, and return valuesin afunction call.

A format for storing file and section headers, relocation
information, symbol tables, and other components of an
object file. When you invoke the assembler as gas960c, the
assembler generates output in this format.

Instruction operand used in a comparison that sets the
condition code.

Three bits that can be set by the processor as aresult of
comparisons and other operations. The condition code bits
can be tested by running programs.

A set of processor features available across al 1960
processors for supporting ordinal and integer arithmetic,
faults, interrupts, etc.

See assembler directive.

64 bits of data. Double-word datais also called long data,
and must be aligned to 8 byte boundaries for efficient use by
load and store instructions.

Glossary

ELF (Executable and
Linkable Format)

exception

extended-real

external reference

fatal error

fault

floating-point format

floating-point literals
floating-point register

global register

The Intel 80960 ABI-compliant object module format.
When invoked with the gas960e command, the assembler
emits this format.

An unusual condition that detected by the processor asthe
result of instruction execution. See also fault.

| EEE standard 80-bit real number that can be processed in an
80-hit floating-point register. A 96-bit extended-real valueis
the same as the 80-bit extended-real value with the
most-significant 16 bitsignored. A 96-bit extended-real
value can be loaded into an aligned global or local
triple-register group.

A symbol in an object module that refersto alocation in
another object module. The linker resolves external
references when creating an executable module.

An error encountered during assembly that terminates the
assembly process without producing object code.

An event that the processor generates to indicate that, while
executing a program, a condition arose that could cause the
processor to go down awrong and possible disastrous path.
One example of afault condition is a divisor operand of zero
in adivide operation: another example is an instruction with
an invalid opcode.

| EEE standard formats for floating-point, or real, numbers.
See also real number formats.

The values +0.0 and +1.0.

80-hit registersf p0 through f p3, available on the 960 KB
processor only.

32-bit registers go through g15.

Glossary-3

i960® Processor Assembler User's Guide

Glossary-4

half-word

identifier

Immediate value

in-circuit emulator

includefile

instruction pointer

instruction set

integer

interactive mode

interrupt

Jbit

16-bit integer or ordinal value. Half-word datais also called
short data. Half-word data must be aligned on even
boundaries for efficient use by the load and store
instructions.

A symbol or name used in the source code for any purpose.

A valuerthat is contained in the machine instruction itself
(e.g., thevalue 10intheinstruction mov 10, r5) Thevalue
must be known at assembly time (i.e., cannot be unresolved).

A software/hardware product used to debug embedded
applications or hardware systems by emulating a particular
processor.

A source text file inserted by the assembler into the primary
source text file.

Aninternal processor register that contains the address of the
instruction currently being executed.

The set of executable instructionsin agiven i960
architecture.

A positive or negative whole number or zero. The range of
values that an integer can represent depends on its width (for
example, short, word, or double-word).

An assembler mode of operation that allows direct input
from the standard input device.

A signal to the processor that an external condition requires
immediate attention. An interrupt initiates a predefined
handler, defined in the interrupt table, to service the
condition.

In IEEE real number formats, a bit which is set (1) for zero
and denormalized finite numbers and clear (0) otherwise.
This bit can be used to detect invalid real numbers.

Glossary

leaf procedure

linker

list file

literal value

little-endian architecture

local register

location counter

long data

long-real

numerics architecture

object code

A local procedure that can be executed by a branch and link
instruction because it doesn’t require that local registers be
saved (rather than a call instruction).

A utility used in preparing object code for execution by
combining object files and resolving external references.

A text file generated by the assembler, containing source
code listing, symbol information, and other information.

A value in a source operand that can be used as immediate
data in the instruction.

The bytes follow a right-to-left order from the most
significant bit to least significant bit, as they do on Intel
processors.

32-bit register® throughr 15.

The current address of an instruction. The location counter
starts at zero and is incremented by the length of each
instruction or data value in the program.

64-bit integer or ordinal value. Long data is also called
double-word data.

IEEE standard 64-bit floating number that can be loaded into
an aligned global or local register pair.

Processor architecture supporting hardware floating-point
arithmetic and trigonometric operations available on the i960
SB/KB processors.

Instructions and associated data for a program, in binary
format. This is the output generated by the assembler and
consumed by the linker.

Glossary-5

i960® Processor Assembler User's Guide

Glossary-6

object file

object module

opcode

operand

ordina

physical address

pipelining

position-independent code
and data

precision

preprocessor

process

The file containing the object module generated by the
assembler when assembly is successful. The output can be
in different formats based on how you invoke the assembler
(COFF for gas960c, ELF for gas960e, and b.out for
gas960).

The formatted object code resulting from assembly.

The portion of each machine language instruction that
determines the action caused by the instruction.

The argument of an assembly language directive or
instruction that represents data used in the operation.

An unsigned whole number or zero. The range of values
that an ordinal can represent depends on its width (for
example, short, word, or double-word).

The address of a specific hardware memory location, as sent
over the bus.

A technique that allows the processor to output the address
of the next bus request during the current data cycle,
maximizing bus efficiency.

The code (. t ext section) or data (. dat a or . bss section) is
loaded at a run-time address that is computed as an offset
from a specific location in memory.

A measure of the accuracy with which areal number can be
represented.

A program that processes an assembly language sourcefile
before the actual assembly process (for example, the macro
processor mpp960).

An executable module that represents a complete task to the
system.

Glossary

program sections

protected extension

quad-word

real

real number formats

register

register group

search path
short data

source directory

sourcefile

specia function register

Parts of a program containing code (text section), initialized
data (data section), and uninitialized data (bss section). Each
section is handled separately by the linker.

Filename extensions that protect the file from being
overwritten by the assembler. The assembler-protected
extensonsare: .s,.as,and. asm

128 bits of data. Quad-word data must be aligned on
16-byte boundaries for efficient use by load and store
instructions.

|EEE standard 32-bit real value that can be loaded into a
single global or local register.

| EEE standard formats for floating-point, or real, numbers:
32-hit (real), 64-bit (long-real), 80- and 96-hit
(extended-real).

Any global register (g0 - g15), local register

(r 0 - r 15), floating-point register (f po - f p3), or special
function register (sf 0 - sf 4).

A set of 2, 3, or 4 registers that participate in an instruction.
See also alignment (register).

A list of directories used as possible pathnamesto afile.

16-bit integer or ordinal value. Short dataisalso called
half-word data. Short data must be aligned on even byte
boundaries for efficient use by the load and store
instructions.

The directory containing your primary source file.
The assembly language input to the assembler.

A 32-bit register (sfO - sf4) used to control specific sections
of the processor. These registers can be manipulated like any
other register, but the contents affect the processor’s
behavior directly.

Glossary-7

i960® Processor Assembler User's Guide

Glossary-8

stack

stack frame

symbol table

system procedure

triple-word

warning

word

A portion of memory used by the processor to store call and
return information.

A portion of the stack allocated by a procedure for storing
temporary values until the procedure returns.

A tablein the object file containing information about the
symbols used in a program.

A procedure executed by a call system (cal | s) instruction.
The entry point for each system procedure appearsin the
system procedure table.

128 bits of data. Triple-word data must be aligned on
16-byte boundaries for efficient use by load and store
instructions.

Anindication of an unusual condition encountered during
assembly. In these situations, the assembler issues a
message but continues processing the sourcefile.

32 bits of data. Word data must be aligned on 4-byte
boundaries for efficient use by the load and store
instructions.

| ndex

- (hyphen), 3-1, 3-2
. (dot), location counter symbol, 5-3
/ (dash), 3-1, 3-3

A

A (Architecture) option, 4-3

ABORT directive, 5-2, 5-10

a.out object filename, 3-4

absolute expression, defined, Glossary-1
absolute value, defined, Glossary-1
address space, defined, Glossary-1
addressing modes, defined, Glossary-1
digndirective, 5-1, 5-3, 5-11

alignment (memory), defined, Glossary-1
alignment (register), defined, Glossary-1
Allow mixed architectures (x) option, 4-21
Architecture (A) option, 4-3

architectures supported by the assembler, 1-2

arguments in assembler invocation command, 3-
2

arithmetic instructions, 7-18, 7-38
ASCII-coded decimal, defined, Glossary-1
.ascii directive, 5-1, 5-6, 5-12

.asciz directive, 5-1, 5-6, 5-12

asm960 assembler invocation command, 3-1

assembler

directive, defined, Glossary-1

invocation command, 3-1

search path, default, 3-1
assembling, 3-1-3-9

invoking the assembler, 3-1

specifying input files, 3-1

using assembler options, 3-1
assembly language

character set, 7-2

comments, 7-14

constants, 7-3

expressions, 7-7

identifiers, 7-3

labels, 7-6

statement format, 7-1

tokens and separators, 7-3
atomic instructions, 7-35

B

b.out object filename, 3-4

b.out output format
and assembler invocation command, 3-1
default filename, 3-4

Big-endian (G) option, 4-7

big-endian architecture, defined, Glossary-2

Index-1

i960® Processor Assembler User's Guide

Index-2

bit and bit field instructions, 7-24
bit field, defined, Glossary-2
branch ingtructions, 7-27

branch pseudo-instructions, 8-2
.bssdirective, 5-1, 5-4, 5-13
bswap instructions, 7-25

burst access, Glossary-2

.byte directive, 5-1, 5-6, 5-7, 5-14
byte ingtructions, 7-24

C

call and return instructions, 7-30
calling convention, defined, Glossary-2
case significance
in assembler invocation command, 3-3
in options, 3-1
in UNIX and DOS, 3-2
significance, 1-3
character constants, 7-5

COFF (Common Object File Format), defined,
Glossary-2

COFF output format
and assembler invocation command, 3-1
default filename, 3-4
.comm directive, 5-1, 5-7, 5-16
comparand, defined, Glossary-2
compare and branch instructions, 7-29
compare-and-branch instructions
related option, 4-16
compare-and-jump pseudo-instructions, 8-4
comparison and classification instructions, 7-40
comparison instructions, 7-25

compatibility, of assembler invocation syntax,
31

of releases, 1-2

with compilers, 1-2
compiler

debugging output, 5-8
compiling

for debugging, 5-8
condition code, defined, Glossary-2
conditional arithmetic instructions, 7-19
conditional branch instructions, 7-28
conditional faults pseudo-instructions, 8-4
core architecture, defined, Glossary-2
core instructions, summary, 7-15-7-35
Ctrl+d key combination, 3-5
customer service, 1-5

D

d (Debug symbols) option, 4-6
D (Define symbol) option, 4-4
data directive, 5-4, 5-17
data movement instructions, 7-15, 7-35
data type conversion instructions, 7-37
debug instructions, 7-32
Debug symbols (d) option, 4-6
debugging, directives for, 5-8
decimal constants, 7-4
decimal instructions, 7-39
default
assembler options, 4-1, 4-2
instruction set, 4-3
output filenames, 3-4
search path, 3-1

Index

.def directive, 5-1, 5-8, 5-18
Define symbol (D) option, 4-4
delimiters, 1-4
.desc directive, 5-1, 5-8, 5-19
.dim directive, 5-8, 5-19
directives
defined, Glossary-2
for controlling the location counter, 5-3
for defining symbols, 5-7
for initializing data, 5-5
for initializing memory, 5-7
for listing control, 5-10
for optimizing, 5-9
for position independence, 5-10
for providing debugger information, 5-8
for specifying the input, 5-3
syntax, 5-2, 5-10
table of, 5-1, 5-2
documents, related, 2-3
dot (.), location counter symbol, 5-3
.double directive, 5-1, 5-6, 5-20
double-word, defined, Glossary-2

E

.gect directive, 5-2, 5-10, 5-21

ELF output format
and assembler invocation command, 3-1
default filename, 3-4

df_sizedirective, 5-1, 5-22

lf_type directive, 5-1, 5-23

.elsedirective, 5-1, 5-3, 5-23, 5-31

.endef directive, 5-1, 5-8, 5-18, 5-24

.endif directive, 5-1, 5-3, 5-24, 5-31

environment variables
G960ARCH,4-3
1960ARCH, 3-7, 4-3
1960BASE, 3-7, 3-9
1960IDENT, 3-8
1960INC, 3-8
PATH, 3-9
using, 3-6
e.out object filename, 3-4
error messages, 4-21, 8-1
.equ directive, 5-1, 5-7, 5-24
example code, 9-1-9-23
exception, defined, Glossary-2
exponential instructions, 7-42
expressions, types of, 7-10
extended arithmetic instructions, 7-19
.extended directive, 5-1, 5-6, 5-25
extended-real, defined, Glossary-3
extensions
for assembly source filenames, 3-4
for file protection, 3-4
for object filenames, 3-4
external reference, defined, Glossary-3

F

fatal error, defined, Glossary-3
fault instructions, 7-31

fault, defined, Glossary-3

file directive, 5-1, 5-26

Index-3

i960® Processor Assembler User's Guide

Index-4

files

object files, 3-4

output, specifying filename, 3-4

sourcefiles, 3-5, 3-8
fill directive, 5-1, 5-7, 5-27
float directive, 5-1, 5-6, 5-28
floating-point

constants, 7-4

format, Glossary-3

literals, 7-5

defined, Glossary-3
register, defined, Glossary-3

G

G (Big-endian) option, 4-8

gas960 assembl er invocation command, 3-1
gas960c assembler invocation command, 3-1
gas960e assembler invocation command, 3-1
Generatelisting (L) option, 4-10

.global directive, 5-1, 5-7, 5-29

global register, defined, Glossary-3

.globl directive, 5-1, 5-7, 5-29

H

half-word, defined, Glossary-3

Help option (h), 4-2

hexadecimal constants, 7-4

.hword directive, 5-1, 5-6, 5-30, 5-47
hyphen (-), 3-1, 3-3

I (Include-file search path) option, 4-8
i (Interactive input) option, 4-9
1960 Rx Processor, 2-1
.ident directive, 5-2, 5-30
identifier, defined, Glossary-3
.ifdef directive, 5-1, 5-3, 5-31
if directive, 5-1, 5-3, 5-31
ifndef directive, 5-1, 5-3, 5-31
.ifnotdef directive, 5-1, 5-3, 5-31
immediate value, Glossary-3
in-circuit emulator, defined, Glossary-4
.anclude directive, 5-1, 5-3, 5-33
includefile, defined, Glossary-4
Include-file search path (1) option, 4-8
input

interactive, 3-5

sourcefiles, 3-5
instruction pointer, defined, Glossary-4
instruction set, defined, Glossary-4
instructions

core, 7-15 thru 7-35

numeric, 7-35 thru 7-43
.int directive, 5-1, 5-6, 5-34, 5-57
integer

constants, 7-4

defined, Glossary-4
interactive

input, 3-6

mode defined, Glossary-4
Interactive input (i) option, 4-9
interrupt, defined, Glossary-4

Index

J-L

Jhit, defined, Glossary-4
Jx strategy, 2-1
Jsym directive, 5-1, 5-7, 5-8, 5-24, 5-40
L (Generate listing) option, 4-10
Jcomm directive, 5-1, 5-7, 5-34
Jeafproc directive, 5-1, 5-9, 5-35
leaf procedure, defined, Glossary-4
Jine directive, 5-1, 5-8, 5-37
Jink_pix directive, 5-2, 5-10, 5-37, 5-42
linker, defined, Glossary-4
Jist directive, 5-2, 5-10, 5-38
list file, defined, Glossary-4
listing control, directives for, 5-10
literal value, defined, Glossary-4
little-endian architecture, defined, Glossary-5
JIndirective, 5-1, 5-8, 5-38
load ingtructions, 5-16
load pseudo-instructions, 8-4
local register, Glossary-5
location counter

defined, Glossary-5

symbol (.), 5-3
logarithmic instructions, 7-42
logical instructions, 7-22
Jomem directive, 5-1, 5-39
long data, defined, Glossary-5
Jong directive, 5-1, 5-6, 5-40, 5-57
long-real, defined, Glossary-5
sym directive, 5-1, 5-7, 5-8, 5-24, 5-40

M

manuds, related, 1-2

memory address, notation, 1-4
messages, 4-21, 6-1

modulo instructions, 7-21
move instructions, 7-17

N

n (No compare-and-branch replacement) option,
4-17

name labels, 7-7

.nolist directive, 5-2, 5-10, 5-41

numeric labels, 7-7

numerics architecture, defined, Glossary-5
numerics instructions, summary, 7-35 thru 7-43

O

0 (Object filename) option, 4-18
object code, defined, Glossary-5
object file, defined, Glossary-5
Object filename (o) option, 4-17
object module, defined, Glossary-5
octal constants, 7-4
opcode, defined, Glossary-5
operand, defined, Glossary-5
operator precedence, 7-9, 7-10
operators, 7-8
optimizing, directivesfor, 5-9
options
Allow mixed architectures (x), 4-21
and arguments, 3-3

Index-5

i960® Processor Assembler User's Guide

Index-6

options (continued)
Architecture (A), 4-3
Big-endian (G), 4-7
Debug symbols (d), 4-6
Define symbol (D), 4-4
Generatelisting (L), 4-10
Help (h), 4-2
in assembler invocation command, 3-1
Include-file search path (1), 4-8
Interactive input (i), 4-9
multiple, 3-3

No compare-and-branch replacement (n),

4-6

Object filename (0), 4-17

Position independence (p), 4-18

table of, 4-1, 4-2

Time stamp (2), 4-23

Trandate, 4-19

Version (V, v960), 4-19

Warnings (W), 4-21
ordinal constants, 7-4
ordinal, defined, Glossary-5
.org directive, 5-1, 5-3, 5-41

P

p (Position independence) option, 4-18
physical address, defined, Glossary-6

.pic directive, 5-2, 5-10, 5-42

.pid directive, 5-2, 5-10, 5-42

pipelining, defined, Glossary-6

position independence, directivesfor, 5-10
Position independence (p) option, 4-18

position-independent code and data, defined,

Glossary-6

precision, defined, Glossary-6
preprocessor, defined, Glossary-6
process, defined, Glossary-6
processor, instruction set selection, 3-7
processor management instructions, 7-32
program sections, defined, Glossary-6
protected extension, defined, Glossary-6
pseudo-instructions, 8-1 thru 8-31

reference, 8-7 thru 8-33
publications, related, 2-2
punctuation, 1-4

Q-R

quad-word, defined, Glossary-6

real number formats, defined, Glossary-6
real, defined, Glossary-6

register group, defined, Glossary-7
register, defined, Glossary-6

registers, notation, 1-4

remainder instructions, 7-21
rotate instructions, 7-21
Rx Strategy, 2-1

S

scale ingtructions, 7-42
scanbyte instruction, 7-25
.scl directive, 5-1, 5-8, 5-43
search path

default, 3-1

for assembler, 3-9

Index

search path (continued)

include files, 3-8

defined, Glossary-7
.section directive, 5-1, 5-4, 5-44
select instructions, 7-17
.Set directive, 5-1, 5-7, 5-24, 5-46
shift instructions, 7-21
short data, defined, Glossary-7
.short directive, 5-1, 5-6, 5-47
sign copying instructions, 6-37
.singledirective, 5-1, 5-6, 5-28, 5-48
.Sizedirective, 5-1, 5-8, 5-49
dash (/), 3-1, 3-3
source directory, defined, Glossary-7
sourcefiles

defined, Glossary-7

description, 3-5

interactive input, 3-5

protection, 3-6

space between options and arguments, 3-2

.space directive, 5-1, 5-7, 5-50
special characters, 1-4

special function register, Glossary-7
.stabd directive, 5-1, 5-8, 5-51
.stabn directive, 5-1, 5-9, 5-51
Stabs directive, 5-1, 5-9, 5-51
stack, defined, Glossary-7

stack frame, defined, Glossary-7
standards, 1-2

store instructions, 7-16

string constants, 7-6

symbol table, defined, Glossary-7
synchronous instructions, 7-34

.sysproc directive, 5-1, 5-9, 5-52
system procedure, defined, Glossary-7

T

.tag directive, 4-1, 4-8, 4-53
target expression, notation, 1-4
.text directive, 5-1, 5-4, 5-54
Time stamp (z) option, 4-23
Ltitledirective, 5-2, 5-10, 5-55
translate (t) option, 4-19
trigonometric instructions, 5-41
triple-word, defined, Glossary-7
type conversion instructions, 7-37
typedirective, 5-1, 5-8, 5-55
type propagation in expressions, 7-13

typographical conventions, 1-3

u-v

unconditiona branch instructions, 7-28
V (Version) option, 4-20

v960 (Version) option, 4-20

.val directive, 5-1, 5-8, 5-56

version (V, v960) options, 4-20

w

W (Warnings) option, 4-21
warning, defined, Glossary-7
Warnings (W) option, 4-21
word, defined, Glossary-7
.word directive, 5-1, 5-6, 5-57

Index-7

i960® Processor Assembler User's Guide

X-Z
x (Allow mixed architectures) option, 4-21

xlate 960 Assembly Language Converter, 2-8
z (Time stamp) option, 4-23

Index-8

