Resolving Bus Contention When Interfacing the Intel386™ EX Embedded Processor with Intel Flash

December 1996
CONTENTS

PAGE

1.0 INTRODUCTION ..5
2.0 READ FOLLOWED BY WRITE TIMING ANALYSIS ...5
3.0 CONCLUSION ..6
APPENDIX A: Additional Information ...7

FIGURES
Figure 1. Interfacing the Intel®86™ EX Embedded Processor with Intel Flash5
Figure 2. Interfacing the Intel®86™ EX Embedded Processor with Intel Flash (Incorrect Analysis)7
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-001</td>
<td>Original version</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

Examining the worst-case timing relations for interfacing the Intel® 386™ EX embedded processor with flash indicates bus contention on a memory read followed by a memory write. However, the Intel® 386™ EX embedded processor specification t_{50} resolves this issue and guarantees no bus contention if the flash data float time t_{GHQZ} is $\leq t_{50}$. This document explains why there is no contention when interfacing with Intel Flash.

2.0 READ FOLLOWED BY WRITE TIMING ANALYSIS

Figure 1 shows the timing for a read followed by a write, along with the signals that must be evaluated to determine if bus contention exists. A full timing diagram is presented in Appendix A. To avoid bus contention, the flash memory must stop driving “read data” on the bus before the Intel® 386™ EX embedded processor starts driving “write data” on the bus.

Controller AC timings are specified with a minimum and a maximum value. For example, at 5V VCC, 25 MHz the RD# valid delay, t_{10a}, is specified as 4 ns minimum and 22 ns maximum. These minimum and maximum specifications are provided to account for variations in temperature, voltage, and processing.

Using these specifications, a timing analysis shows that contention occurs when RD# is deasserted late, i.e., 22 ns maximum delay, and D[15:0] is driven early, i.e., 4 ns minimum delay. However, specification t_{50} guarantees by design that there is no contention. This is guaranteed because if RD# goes high late, D[15:0] will also be driven late as the logic delays of t_{10a} and t_{12} track each other across temperature, voltage, and processing variations. Since t_{10a} and t_{12} track each other, they are separated by a CLK2 (each are referenced to a rising clock edge, separated by a CLK2—20 ns at 25 MHz.). Therefore, the data float time of the flash memory must be less than CLK2, as specified by t_{50}.

The following example shows the calculation for data float without using t_{50} which yields an unrealistic float time requirement for flash memory. The example then shows the correct calculation using the Intel® 386™ EX embedded processor specification of t_{50}.

At 5V VCC:

$t_{10a} = [4, 22] = RD#, WR# Valid Delay
$t_{12} = [4, 23] = D[15:0] Write Data Valid Delay
$t_{GHQZ} = Flash Data Float Time (20 ns for 28F400BV)$

Analysis without t_{50} (incorrect):

$t_{GHQZ} = CLK2 - t_{10a}\max + t_{12}\min$
$t_{GHQZ} = 20 ns - 22 + 4 = 2 ns.$

Figure 1. Interfacing the Intel® 386™ EX Embedded Processor with Intel Flash
Since the flash memory data float time, t_{GHQZ}, is longer than 2 ns, this would indicate a transceiver would be necessary to avoid bus contention. However, as previously described, this analysis is incorrect because t_{50} guarantees no contention, if $t_{GHQZ} \leq t_{50}$.

Analysis using t_{50} (correct):

$t_{GHQZ} \leq t_{50} = \text{CLK2} = 20 \text{ ns} \ @ \ 25 \text{ MHz}.$

3.0 CONCLUSION

The Intel386 EX embedded processor specification t_{50} guarantees no bus contention, if $t_{GHQZ} \leq t_{50}$. The Intel386 EX embedded processor and Intel Flash can be interfaced with no glue logic.
APPENDIX A
ADDITIONAL INFORMATION

Figure 2 shows all timing parameters for interfacing the Intel386™ EX embedded processor with flash. Note t_{10a} and t_{12} should not be used to determine bus contention; t_{50} should be used to determine bus contention.

Figure 2. Interfacing the Intel386™ EX Embedded Processor with Intel Flash