Product Features

- 40°C to +125°C Ambient
- Powerdown and Idle Modes
- High Performance CHMOS 16-Bit CPU
- 48 Kbytes of On-Chip EPROM
- Up to 1.5 Kbyte of On-Chip Register RAM
- 512 Bytes of Additional RAM (Code RAM)
- Register-Register Architecture
- Six Channel/10-Bit A/D with Sample/Hold
- Programmable A/D Conversion and S/H Times
- 35 Prioritized Interrupt Sources
- Up to Seven 8-Bit (56) I/O Ports
- Full Duplex Serial I/O Port
- Dedicated Baud Rate Generator
- 20 MHz Operating Frequency

- High Speed Peripheral Transaction Server (PTS)
- Two 16-Bit Software Timers
- Six High Speed Capture/Compare (EPA)
- Two Flexible 16-Bit Timer/Counters
- Full Duplex Synchronous Serial I/O Port (SSIO)
- Flexible 8-/16-Bit External Bus
- “Windowing” Allows 8-Bit Addressing to Some 16-Bit Addresses
- 1.4 µs 16 x 16 Multiply
- 2.4 µs 32/16 Divide
- 52-Pin PLCC Package
- Oscillator Fail Detect

Notice: This document contains information on products in full production. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.
Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 87C196JV - Automotive may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
PO Box 5937
Denver CO 80217-9808

call 1-800-548-4725

Copyright © Intel Corporation 7/8/97

*Third-party brands and names are the property of their respective owners.
Contents

1.0 INTRODUCTION ... 1
2.0 PIN DESCRIPTIONS ... 3
3.0 ELECTRICAL CHARACTERISTICS .. 4
 3.1 DC CHARACTERISTICS .. 4
 3.2 AC CHARACTERISTICS .. 6
 3.2.1 Test Conditions .. 6
 3.2.2 Explanation of AC Symbols .. 9
 3.3 EPROM SPECIFICATIONS .. 10
 3.3.1 AC EPROM Programming Characteristics 10
 3.3.2 EPROM Programming Waveforms .. 11
 3.4 A/D CONVERTER SPECIFICATIONS .. 12
 3.5 AC CHARACTERISTICS - Serial Port - Shift Register Mode........................ 14
 3.5.1 52-Lead Device Design Considerations ... 15
 3.5.2 87C196JV - Automotive Errata... 16
 3.5.3 87C196JR/JQ D-step to 87C196JV - Automotive A-step Design Consider-
 ations .. 16
 3.5.4 87C196JR/JQ C-step to JV A-step Design Considerations 17
 3.5.5 87C196JT to 87C196JV Design Considerations 20
 3.5.6 Memory Map for JV .. 21
4.0 DATASHEET REVISION HISTORY ..22
Figures
1 87C196JV - Automotive Block Diagram ...1
2 87C196JV - Automotive Family Nomenclature ..2
3 Package Diagram ...2
4 System Bus Timing ...7
5 External Clock Drive Waveforms ...8
6 Input/Output Test Conditions ..8
7 Float Test Conditions ..9
8 Slave Programming Mode Data Program Mode with Single Program Pulse .11
9 Slave Programming Mode in Word Dump or Data Verify Mode
 with Auto Increment ...11
10 Slave Programming Mode Timing in Data Program Mode
 with Repeated Program Pulse and Auto Increment12
11 Waveform - Serial Port - Shift Register Mode 0 ...14

Tables
1 Pin Descriptions ...3
2 DC Characteristics (Under Listed Operating Conditions)4
3 AC Characteristics (Over Specified Operating Conditions)6
4 External Clock Drive ...8
5 Thermal Characteristics ...9
6 Explanation of AC Symbols ...9
7 AC EPROM Programming Characteristics ..10
8 DC EPROM Programming Characteristics ...10
9 A/D Operating Conditions ..12
10 A/D Characteristics ..13
11 Serial Port Timing - Shift Register Mode ...14
1.0 INTRODUCTION

The 87C196JV - Automotive A-step (JV-A), is a member of the MCS® 96 microcontroller family. This device is a memory scalar of the 87C196JT A-step (JT-A) and is designed for strict functional and electrical compatibility. The 87C196JV - Automotive has the highest 52-lead memory density of the MCS 96 microcontroller family, with 48K of on-chip EPROM, 1.5 K of on-chip register RAM, and 512 bytes of additional RAM (Code RAM). The high memory integration of the 87C196JV - Automotive supports high-functionality in a low pin-count package and the use of the high level programming language C.

The MCS 96 microcontroller family members are all high-performance microcontrollers with a 16-bit CPU. The 87C196JV - Automotive is composed of the high-speed (20 MHz) core as well as the following peripherals: 48 Kbytes of Program EPROM, up to 1.5 Kbyte of Register RAM, 512 bytes of code RAM (16-bit addressing modes) with the ability to execute from this RAM space, a 6 channel-10-Bit/±3 LSB analog to digital converter with programmable S/H times with conversion times 15 μs at 20 MHz, an asynchronous/synchronous serial I/O port (8096 compatible) with a dedicated 16-bit baud rate generator, an additional synchronous serial I/O port with full duplex master/slave transceivers, a flexible timer/counter structure with prescaler, cascading, and quadrature capabilities, 6 modularized multiplexed high speed I/O for capture and compare (called Event Processor Array) with 250 ns resolution and double buffered inputs, a sophisticated prioritized interrupt structure with programmable Peripheral Transaction Server (PTS). The PTS has several channel modes, including single/burst block transfers from any memory location to any memory location, a PWM and PWM toggle mode to be used in conjunction with the EPA, and an A/D scan mode.

Additional SFR space is allocated for the EPA and can be “windowed” into the lower Register RAM area.

Figure 1. 87C196JV - Automotive Block Diagram
Figure 2. 87C196JV - Automotive Family Nomenclature

![Diagram showing the nomenclature of the 87C196JV - Automotive family.]

- **Product Designation**: A, N, 8, 9, 6, J, V
- **Product Family**: A
- **CHMOS Technology**: N
- **Program Memory Options**: 0 = ROMless, 3 = Masked ROM, 7 = EPROM, OTP, QROM
- **Package Type Options**: J = CerQUAD, N = PLCC (plastic leaded chip carrier)
- **Temperature and Burn-in Options**: A = -40°C to +125°C ambient with Intel Standard Burn-in

Figure 3. Package Diagram

![Diagram showing the pin layout of the 87C196JV - Automotive device.]

- **View of component as mounted on PC board**
- **Pinouts**: 87C196JV 52-Pin PLCC and CerQUAD
- **Pin Numbers**:
 - AD14 / P4.6
 - AD13 / P4.5
 - AD12 / P4.4
 - AD11 / P4.3
 - AD10 / P4.2
 - AD9 / P4.1
 - AD8 / P4.0
 - AD7 / P3.7
 - AD6 / P3.6
 - AD5 / P3.5
 - AD4 / P3.4
 - AD3 / P3.3
 - AD2 / P3.2
 - AD1 / P3.1
 - AD0 / P3.0
 - P0.7 / ACH7
 - P0.6 / ACH6
 - P0.5 / ACH5
 - P0.4 / ACH4
 - P0.3 / ACH3
 - P2.0 / TXD
 - P2.1 / RXD
 - P2.2 / EXTINT
 - P2.4 / P2.6
 - P2.7 / CLKOUT
 - P6.4 / P6.5 / P6.6 / P6.7
 - P5.0 / ALE / ADV# / P5.2
 - P5.3 / RD# / P5.3
 - P5.2 / WR# / WRL# / P5.2
 - P3.7 / AD15
 - P3.6 / AD14
 - P3.5 / AD13
 - P3.4 / AD12
 - P3.3 / AD11
 - P3.2 / AD10
 - P3.1 / AD9
 - P3.0 / AD8
 - P3.9
 - P3.8
 - P3.7
 - P3.6
 - P3.5
 - P3.4
 - P3.3
 - P3.2
 - P3.1
 - P3.0
 - P2.9
 - P2.8
 - P2.7
 - P2.6
 - P2.5
 - P2.4
 - P2.3
 - P2.2
 - P2.1
 - P2.0
 - P1.3 / EPA3
 - P1.2 / EPA2 / T2DIR
 - P1.1 / EPA1
 - P1.0 / EPA0 / T2CLK
 - P0.9
 - P0.8
 - P0.7
 - P0.6
 - P0.5
 - P0.4
 - P0.3
 - P0.2
 - P0.1
 - P0.0
 - P6.7 / SD1
 - P6.6 / SC1
 - P6.5 / SD0
 - P6.4 / SC0
 - P6.3
 - P6.2
 - P6.1 / EPA9
 - P6.0 / EPA8
 - P5.7
 - P5.6
 - P5.5
 - P5.4
 - P5.3
 - P5.2
 - P5.1
 - P5.0
 - P4.7
 - P4.6
 - P4.5
 - P4.4
 - P4.3
 - P4.2
 - P4.1
 - P4.0
 - P3.9
 - P3.8
 - P3.7
 - P3.6
 - P3.5
 - P3.4
 - P3.3
 - P3.2
 - P3.1
 - P3.0
 - P2.9
 - P2.8
 - P2.7
 - P2.6
 - P2.5
 - P2.4
 - P2.3
 - P2.2
 - P2.1
 - P2.0
 - P1.3
 - P1.2
 - P1.1
 - P1.0
 - P0.9
 - P0.8
 - P0.7
 - P0.6
 - P0.5
 - P0.4
 - P0.3
 - P0.2
 - P0.1
 - P0.0
 - P6.7
 - P6.6
 - P6.5
 - P6.4
 - P6.3
 - P6.2
 - P6.1
 - P6.0
 - P5.7
 - P5.6
 - P5.5
 - P5.4
 - P5.3
 - P5.2
 - P5.1
 - P5.0
 - P4.7
 - P4.6
 - P4.5
 - P4.4
 - P4.3
 - P4.2
 - P4.1
 - P4.0
 - P3.9
 - P3.8
 - P3.7
 - P3.6
 - P3.5
 - P3.4
 - P3.3
 - P3.2
 - P3.1
 - P3.0
 - P2.9
 - P2.8
 - P2.7
 - P2.6
 - P2.5
 - P2.4
 - P2.3
 - P2.2
 - P2.1
 - P2.0
 - P1.3
 - P1.2
 - P1.1
 - P1.0
 - P0.9
 - P0.8
 - P0.7
 - P0.6
 - P0.5
 - P0.4
 - P0.3
 - P0.2
 - P0.1
 - P0.0
 - P6.7
 - P6.6
 - P6.5
 - P6.4
 - P6.3
 - P6.2
 - P6.1
 - P6.0
 - P5.7
 - P5.6
 - P5.5
 - P5.4
 - P5.3
 - P5.2
 - P5.1
 - P5.0
 - P4.7
 - P4.6
 - P4.5
 - P4.4
 - P4.3
 - P4.2
 - P4.1
 - P4.0
 - P3.9
 - P3.8
 - P3.7
 - P3.6
 - P3.5
 - P3.4
 - P3.3
 - P3.2
 - P3.1
 - P3.0
 - P2.9
 - P2.8
 - P2.7
 - P2.6
 - P2.5
 - P2.4
 - P2.3
 - P2.2
 - P2.1
 - P2.0
 - P1.3
 - P1.2
 - P1.1
 - P1.0
 - P0.9
 - P0.8
 - P0.7
 - P0.6
 - P0.5
 - P0.4
 - P0.3
 - P0.2
 - P0.1
 - P0.0

A4575-01
2.0 Pin Descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>CC</sub></td>
<td>Main supply voltage (+5 V).</td>
</tr>
<tr>
<td>V<sub>SS</sub></td>
<td>Digital circuit ground (0 V). There are three V<sub>SS</sub> pins, all of which MUST be connected to a single ground plane.</td>
</tr>
<tr>
<td>V<sub>REF</sub></td>
<td>Reference for the A/D converter (+5 V). V<sub>REF</sub> is also the supply voltage to the analog portion of the A/D converter and the logic used to read Port 0 must be connected for A/D and Port 0 to function.</td>
</tr>
<tr>
<td>V<sub>PP</sub></td>
<td>Programming voltage for the EPROM parts. It should be +12.5 V for programming. It is also the timing pin for the return from powerdown circuit. Connect this pin with a 1 µF capacitor to V<sub>SS</sub> and a 1 MΩ resistor to V<sub>CC</sub>. If this function is not used, V<sub>PP</sub> may be tied to V<sub>SS</sub>.</td>
</tr>
<tr>
<td>ANGND</td>
<td>Reference ground for the A/D converter. Must be held at nominally the same potential as V<sub>SS</sub>.</td>
</tr>
<tr>
<td>XTL1</td>
<td>Input of the oscillator inverter and the internal clock generator.</td>
</tr>
<tr>
<td>P2.7/CLKOUT</td>
<td>Output of the internal clock generator. The frequency is 1/2 the oscillator frequency. It has a 50% duty cycle. Also LSIO pin.</td>
</tr>
<tr>
<td>RESET#</td>
<td>Reset input to the chip. Input low for at least 16 state times resets the chip. The subsequent low-to-high transition resynchronizes CLKOUT and commences a 10-state time sequence in which the PSW is cleared, bytes are read from 2018H and 201AH loading the CCBs, and a jump to location 2080H is executed. Input high for normal operation. RESET# has an internal pullup.</td>
</tr>
<tr>
<td>EA#</td>
<td>Input for memory select (External Access). EA# equal to a high causes memory accesses to locations 2000H through 5FFFH to be directed to on-chip EPROM/ROM. EA# equal to a low causes accesses to these locations to be directed to off-chip memory. EA# = +12.5 V causes execution to begin in the Programming Mode. EA# latched at reset.</td>
</tr>
<tr>
<td>P5.0/ALE/ADV#</td>
<td>Address Latch Enable or Address Valid output, as selected by CCR. Both pin options provide a latch to demultiplex the address from the address/data bus. When the pin is ADV#, it goes inactive (high) at the end of the bus cycle. ADV# can be used as a chip select for external memory. ALE/ADV# is active only during external memory accesses. Also LSIO when not used as ALE.</td>
</tr>
<tr>
<td>P5.3/RD#</td>
<td>Read signal output to external memory. RD# is active only during external memory reads or LSIO when not used as RD#.</td>
</tr>
<tr>
<td>P5.2/WR#/WRL#</td>
<td>Write and Write Low output to external memory, as selected by the CCR, WR# goes low for every external write, while WRL# goes low only for external writes where an even byte is being written. WR#/WRL# is active during external memory writes. Also an LSIO pin when not used as WR#/WRL#.</td>
</tr>
<tr>
<td>P1.0/T2CLK</td>
<td>Dual-function I/O pin. Primary function is that of a bidirectional I/O pin, however it may also be used as a TIMER2 Clock input. The TIMER2 increments or decrements on both positive and negative edges of this pin.</td>
</tr>
<tr>
<td>P1.2/T2DIR</td>
<td>Dual-function I/O pin. Primary function is that of a bidirectional I/O pin, however it may also be used as a TIMER2 Direction input. The TIMER2 increments when this pin is high and decrements when this pin is low.</td>
</tr>
<tr>
<td>PORT1/EPA0-3 P6.0-6.1/EPA8-9</td>
<td>Dual-function I/O port pins. Primary function is that of bidirectional I/O. System function is that of High Speed capture and compare. EPA0 and EPA2 have yet another function of T2CLK and T2DIR of the TIMER2 timer/counter.</td>
</tr>
<tr>
<td>PORT0/ACH2-7</td>
<td>6-bit high impedance input-only port. These pins can be used as digital inputs and/or as analog inputs to the on-chip A/D converter. These pins are also used as inputs to EPROM parts to select the Programming Mode.</td>
</tr>
<tr>
<td>P6.4-6.7/SSIO</td>
<td>Dual-function I/O ports that have a system function as Synchronous Serial I/O. Two pins are clocks and two pins are data, providing full duplex capability.</td>
</tr>
<tr>
<td>PORT2</td>
<td>8-bit multi-functional port. All of its pins are shared with other functions.</td>
</tr>
<tr>
<td>PORT3 and 4</td>
<td>8-bit bidirectional I/O ports with open drain outputs. These pins are shared with the multiplexed address/data bus which has strong internal pullups.</td>
</tr>
</tbody>
</table>
3.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

- **Storage Temperature**: –60°C to +150°C
- **Voltage from** V_{PP} or EA# to V_{SS} or ANGND: –0.5 V to +13.0 V
- **Voltage from any other pin to** V_{SS} or ANGND: –0.5 V to +7.0 V

 This includes V_{PP} on ROM and CPU devices.
- **Power Dissipation**: 0.5 W

OPERATING CONDITIONS

- **T_A (Ambient Temperature Under Bias)**: –40°C to +125°C
- **V_{CC} (Digital Supply Voltage)**: 4.75 V to 5.25 V
- **V_{REF} (Analog Supply Voltage)**: 4.75 V to 5.25 V
- **F_{OSC} (Oscillator Frequency)**: 4 MHz to 20 MHz

NOTICE: ANGND and V_{SS} should be nominally at the same potential.

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>–0.5</td>
<td>0.3 V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>0.3</td>
<td>0.45</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTES:

1. All BD (bidirectional) pins except CLKOUT. CLKOUT is excluded due to not being weakly pulled high in reset. BD pins include Port1, Port2, Ports 3, 4 and 5 and Port6.
2. Standard Input pins include XTAL1, EA#, RESET# and Port 1/2/3/4/5/6 when configured as inputs.
3. All Bidirectional I/O pins when configured as Outputs (Push/Pull).
4. Device is Static and should operate below 1 Hz, but only tested down to 4 MHz.
5. Typical values are based on limited number of samples and are not guaranteed. The values listed are at room temperature and $V_{REF} = V_{CC} = 5.0$ V.
6. $V_{IH} = 0.7 V_{CC}$ (Note 6).
7. This specification is not tested in production and is based upon theoretical estimates and/or product characterization.
Table 2. DC Characteristics (Under Listed Operating Conditions) (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Sym</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage (Output Configured as Push/Pull)</td>
<td>V_{CC} – 0.3</td>
<td>V_{CC} – 0.7</td>
<td>V_{CC} – 1.5</td>
<td>V</td>
<td>I_{OH} = –200 µA (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_{OH} = –3.2 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I_{OH} = –7.0 mA</td>
</tr>
<tr>
<td>I_{LI}</td>
<td>Input Leakage Current (Standard Inputs P3/4)</td>
<td>±10 µA</td>
<td>V_{SS} ≤ V_{IN} ≤ V_{CC} (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{L11}</td>
<td>Input Leakage Current (Port 0—A/D Inputs)</td>
<td>±2 µA</td>
<td>V_{SS} ≤ V_{IN} ≤ V_{REF}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current (NMI Pin)</td>
<td>175 µA</td>
<td>V_{SS} ≤ V_{IN} ≤ V_{CC}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH2}</td>
<td>Output High Voltage in RESET</td>
<td>V_{CC} – 1</td>
<td>V</td>
<td>I_{OH} = –15 µA (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{OH2}</td>
<td>Output High Current in RESET</td>
<td>–30 µA</td>
<td>V_{OH2} = V_{CC} – 1 V (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–75 µA</td>
<td>V_{OH2} = V_{CC} – 2.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>–90 µA</td>
<td>V_{OH2} = V_{CC} – 4 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL3}</td>
<td>Output Low Voltage in RESET (RESET Pin Only)</td>
<td>0.3 V</td>
<td>I_{OL3} = 4 mA (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 V</td>
<td>I_{OL3} = 6 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 V</td>
<td>I_{OL3} = 8 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{RST}</td>
<td>Reset Pullup Resistor</td>
<td>6K Ω</td>
<td>F_{TEST} = 1.0 MHz (5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{S}</td>
<td>Pin Capacitance (Any Pin to V_{SS})</td>
<td>10 pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{WPU}</td>
<td>Weak Pullup Resistance (Approximate)</td>
<td>150K Ω</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All BD (bidirectional) pins except CLKOUT. CLKOUT is excluded due to not being weakly pulled high in reset. BD pins include Port1, Port2, Ports 3, 4 and 5 and Port6.
2. Standard Input pins include XTAL1, EA#, RESET# and Port 1/2/3/4/5/6 when configured as inputs.
3. All Bidirectional I/O pins when configured as Outputs (Push/Pull).
4. Device is Static and should operate below 1 Hz, but only tested down to 4 MHz.
5. Typicals are based on limited number of samples and are not guaranteed. The values listed are at room temperature and V_{REF} = V_{CC} = 5.0 V.
6. V_{BI} Max for Port 0 pins = V_{REF} = 0.5 V.
7. This specification is not tested in production and is based upon theoretical estimates and/or product characterization.
3.2 AC CHARACTERISTICS

3.2.1 Test Conditions

- Capacitive load on all pins = 100 pF
- Rise and Fall Times = 10 ns
- $F_{OSC} = 20$ MHz

Table 3. AC Characteristics (Over Specified Operating Conditions) (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{AVDV}</td>
<td>Address Valid to Input Data Valid</td>
<td>$3T_{OSC} - 55$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{RLDV}</td>
<td>RD# Active to Input Data Valid</td>
<td>$T_{OSC} - 25$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{CLDV}</td>
<td>CLKOUT Low to Input Data Valid</td>
<td>$T_{OSC} - 50$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{RHDZ}</td>
<td>End of RD# to Input Data Float</td>
<td>T_{OSC} ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{RXDX}</td>
<td>Data Hold after RD# Inactive</td>
<td>0 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The System Must Meet These Specifications To Work With The 87C196JV - Automotive

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{XTAL}</td>
<td>Oscillator Frequency</td>
<td>4 MHz</td>
<td>20 MHz (1)</td>
<td></td>
</tr>
<tr>
<td>T_{OSC}</td>
<td>Oscillator Period ($1/F_{XTAL}$)</td>
<td>50 ns</td>
<td>250 ns</td>
<td></td>
</tr>
<tr>
<td>T_{XHCH}</td>
<td>XTAL1 High to CLKOUT High or Low</td>
<td>20 ns</td>
<td>110 ns (2)</td>
<td></td>
</tr>
<tr>
<td>T_{CLCL}</td>
<td>CLKOUT Period</td>
<td>$2T_{OSC}$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{CHCL}</td>
<td>CLKOUT High Period</td>
<td>$T_{OSC} - 10$ ns</td>
<td>$T_{OSC} + 15$ ns</td>
<td></td>
</tr>
<tr>
<td>T_{CLLL}</td>
<td>CLKOUT Falling Edge to ALE Rising</td>
<td>-10 ns</td>
<td>15 ns</td>
<td></td>
</tr>
<tr>
<td>T_{LLCH}</td>
<td>ALE/ADV# Falling Edge to CLKOUT Rising</td>
<td>-20 ns</td>
<td>15 ns</td>
<td></td>
</tr>
<tr>
<td>T_{LHLH}</td>
<td>ALE/ADV# Cycle Time</td>
<td>$4T_{OSC}$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{LHLL}</td>
<td>ALE/ADV# High Period</td>
<td>$T_{OSC} - 10$ ns</td>
<td>$T_{OSC} + 10$ ns</td>
<td></td>
</tr>
<tr>
<td>T_{AVLL}</td>
<td>Address Setup to ALE/ADV# Falling Edge</td>
<td>$T_{OSC} - 15$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{LLAX}</td>
<td>Address Hold after ALE/ADV# Falling Edge</td>
<td>$T_{OSC} - 40$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{LLRL}</td>
<td>ALE/ADV# Falling Edge to RD# Falling Edge</td>
<td>$T_{OSC} - 30$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{RLCL}</td>
<td>RD# Low to CLKOUT Falling Edge</td>
<td>4 ns</td>
<td>30 ns</td>
<td></td>
</tr>
<tr>
<td>T_{RLLH}</td>
<td>RD# Low Period</td>
<td>$T_{OSC} - 5$ ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{RHLH}</td>
<td>RD# Rising Edge to ALE/ADV# Rising Edge</td>
<td>T_{OSC} ns</td>
<td>$T_{OSC} + 25$ ns (3)</td>
<td></td>
</tr>
<tr>
<td>T_{RLAZ}</td>
<td>RD# Low to Address Float</td>
<td>5 ns (5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Testing performed at 4 MHz, however, the device is static by design and will typically operate below 1 Hz.
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. T_{RLAZ} (max) = 5 ns by design.
Table 3. AC Characteristics (Over Specified Operating Conditions) (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLLWL</td>
<td>ALE/ADV# Falling Edge to WR# Falling Edge</td>
<td>TOSC–10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TCLWL</td>
<td>CLKOUT Low to WR# Falling Edge</td>
<td>–5</td>
<td>25</td>
<td>ns</td>
</tr>
<tr>
<td>TVQWH</td>
<td>Data Stable to WR# Rising Edge</td>
<td>TOSC–23</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TQWHH</td>
<td>CLKOUT High to WR# Rising Edge</td>
<td>–10</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>TWLWH</td>
<td>WR# Low Period</td>
<td>TOSC–20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TWHOX</td>
<td>Data Hold after WR# Rising Edge</td>
<td>TOSC–25</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TWHLL</td>
<td>WR# Rising Edge to ALE/ADV# Rising Edge</td>
<td>TOSC–10</td>
<td>TOSC+15</td>
<td>ns (3)</td>
</tr>
<tr>
<td>TWHX</td>
<td>AD8-15 Hold after WR# Rising Edge</td>
<td>TOSC–30</td>
<td></td>
<td>ns (4)</td>
</tr>
<tr>
<td>TRHAX</td>
<td>AD8-15 Hold after RD# Rising Edge</td>
<td>TOSC–30</td>
<td></td>
<td>ns (4)</td>
</tr>
</tbody>
</table>

NOTES:
1. Testing performed at 4 MHz, however, the device is static by design and will typically operate below 1 Hz.
2. Typical specifications, not guaranteed.
3. Assuming back-to-back bus cycles.
4. 8-bit bus only.
5. TRLAZ (max) = 5 ns by design.

Figure 4. System Bus Timing
Table 4. External Clock Drive

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/T_{XLXL}$</td>
<td>Oscillator Frequency</td>
<td>4</td>
<td>20</td>
<td>MHz</td>
</tr>
<tr>
<td>T_{XLXL}</td>
<td>Oscillator Period (T_{OSC})</td>
<td>50</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>T_{XHXX}</td>
<td>High Time</td>
<td>$0.35T_{OSC}$</td>
<td>$0.65T_{OSC}$</td>
<td>ns</td>
</tr>
<tr>
<td>T_{XLXX}</td>
<td>Low Time</td>
<td>$0.35T_{OSC}$</td>
<td>$0.65T_{OSC}$</td>
<td>ns</td>
</tr>
<tr>
<td>T_{XLXH}</td>
<td>Rise Time</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_{XHXL}</td>
<td>Fall Time</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Figure 5. External Clock Drive Waveforms

Figure 6. Input/Output Test Conditions

Note:
AC testing inputs are driven at 3.5 V for a logic “1” and 0.45 V for a logic “0”. Timing measurements are made at 2.0 V for a logic “1” and 0.8 V for a logic “0”.
3.2.2 Explanation of AC Symbols

Each symbol is two pairs of letters prefixed by “t” for time. The characters in a pair indicate a signal and its condition, respectively. Symbols represent the time between the two signal/condition points.

Table 6. Explanation of AC Symbols

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>H – High</td>
<td>A – Address</td>
</tr>
<tr>
<td>L – Low</td>
<td>B – BHE#</td>
</tr>
<tr>
<td>V – Valid</td>
<td>C – CLKOUT</td>
</tr>
<tr>
<td>X – No Longer Valid</td>
<td>D – DATA</td>
</tr>
<tr>
<td>Z – Floating</td>
<td>G – Buswidth</td>
</tr>
</tbody>
</table>

| HA – HLDA# |
| L – ALE/ADV# |
| R – RD# |
| W – WR#/WRH#/WRI# |
| X – XTAL1 |
| Y – READY |
3.3 EPROM SPECIFICATIONS

3.3.1 AC EPROM Programming Characteristics

Operating Conditions:

- Load Capacitance = 150 pF
- $T_C = 25^\circ C \pm 5^\circ C$
- $V_{REF} = 5 V \pm 0.25 V$
- $V_{SS} = 0 V$
- ANGND = 0 V
- $V_{PP} = 12.5 V \pm 0.25 V$
- $EA# = 12.5 V \pm 0.25 V$
- $F_{OSC} = 5 MHz$
- $V_{CC} = 5 V \pm 0.25 V$

Table 7. AC EPROM Programming Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{AVLL}</td>
<td>Address Setup Time</td>
<td>0</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{LLAX}</td>
<td>Address Hold Time</td>
<td>100</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{DVPL}</td>
<td>Data Setup Time</td>
<td>0</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PLDX}</td>
<td>Data Hold Time</td>
<td>400</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{LLLH}</td>
<td>PALE# Pulse Width</td>
<td>50</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{LHPL}</td>
<td>PALE# High to PROG# Low</td>
<td>220</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PHLL}</td>
<td>PROG# High to Next PALE# Low</td>
<td>220</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PHDL}</td>
<td>Word Dump Hold Time</td>
<td>50</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PHPL}</td>
<td>PROG# High to Next PROG# Low</td>
<td>220</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PLDV}</td>
<td>PROG# Low to Word Dump Valid</td>
<td>50</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{SHLL}</td>
<td>RESET# High to First PALE# Low</td>
<td>1100</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PHIL}</td>
<td>PROG# High to AINC# Low</td>
<td>0</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{ILIH}</td>
<td>AINC# Pulse Width</td>
<td>240</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{ILVH}</td>
<td>PVER Hold after AINC# Low</td>
<td>50</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{ILPL}</td>
<td>AINC# Low to PROG# Low</td>
<td>170</td>
<td>T_{OSC}</td>
<td></td>
</tr>
<tr>
<td>T_{PHVL}</td>
<td>PROG# High to PVER# Valid</td>
<td>220</td>
<td>T_{OSC}</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Run time programming is done with $F_{OSC} = 6 MHz$ to 10 MHz, $V_{CC}, V_{PD}, V_{REF} = 5 V \pm 0.25 V$.
 $T_C = 25^\circ C \pm 5^\circ C$ and $V_{PP} = 12.5 V \pm 0.25 V$. For run-time programming over a full operating range, contact factory.
2. Programming Specifications are not tested, but guaranteed by design.
 This specification is for the word dump mode. For programming pulses use $300T_{OSC} + 100 \mu s$.

Table 8. DC EPROM Programming Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{PP}</td>
<td>V_{PP} Programming Supply Current</td>
<td>100</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: V_{PP} must be within 1 V of V_{CC} while $V_{CC} < 4.5 V$. V_{PP} must not have a low impedance path to ground or V_{SS} while $V_{CC} > 4.5 V$.
3.3.2 EPROM Programming Waveforms

Figure 8. Slave Programming Mode Data Program Mode with Single Program Pulse

![Waveforms Diagram](image1)

Figure 9. Slave Programming Mode in Word Dump or Data Verify Mode with Auto Increment

![Waveforms Diagram](image2)
3.4 A/D CONVERTER SPECIFICATIONS

The speed of the A/D converter in the 10-bit or 8-bit modes can be adjusted by setting the AD_TIME special function register to the appropriate value. The AD_TIME register only programs the speed at which the conversions are performed, not the speed at which it can convert correctly.

The converter is ratiometric, so absolute accuracy is dependent on the accuracy and stability of V_{REF}. V_{REF} must be within 0.5 V of V_{CC} since it supplies both the resistor ladder and the digital portion of the converter and input port pins.

For testing purposes, after a conversion is started, the device is placed in the IDLE mode until the conversion is complete. Testing is performed at $V_{REF} = 5.12$ V and 20 MHz operating frequency.

There is an AD_TEST register that allows for conversion on ANGND and V_{REF} as well as zero offset adjustment. The absolute error listed is without doing any adjustments.

Table 9. A/D Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Automotive Ambient Temperature</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Digital Supply Voltage</td>
<td>4.75</td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Analog Supply Voltage</td>
<td>4.75</td>
<td>5.25</td>
<td>V (2,3)</td>
</tr>
<tr>
<td>T_{SAM}</td>
<td>Sample Time</td>
<td>2.0</td>
<td></td>
<td>µs (4)</td>
</tr>
<tr>
<td>T_{CONV}</td>
<td>Conversion Time</td>
<td>15</td>
<td>18</td>
<td>µs (4)</td>
</tr>
<tr>
<td>F_{OSC}</td>
<td>Oscillator Frequency</td>
<td>4</td>
<td>20</td>
<td>MHz</td>
</tr>
</tbody>
</table>

NOTES:
1. ANGND and V_{SS} should nominally be at the same potential.
2. V_{REF} must not exceed V_{CC} by more than +0.5 V.
3. Testing is performed at $V_{REF} = 5.12$ V.
4. The value of AD_TIME must be selected to meet these specifications.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical*(1)</th>
<th>Min</th>
<th>Max</th>
<th>Units**</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1024</td>
<td>10</td>
<td>1024</td>
<td>Levels</td>
<td></td>
</tr>
<tr>
<td>Absolute Error</td>
<td></td>
<td>0</td>
<td>±3</td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Full-scale Error</td>
<td>±2</td>
<td></td>
<td></td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Zero Offset Error</td>
<td>±2</td>
<td></td>
<td></td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Non-Linearity</td>
<td></td>
<td></td>
<td>±3</td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Differential Non-Linearity</td>
<td>> – 0.5</td>
<td>+ 0.5</td>
<td></td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Channel-to-Channel Matching</td>
<td>0</td>
<td>±1</td>
<td></td>
<td>LSBs</td>
<td></td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.25</td>
<td>0</td>
<td></td>
<td>LSBs</td>
<td>(1)</td>
</tr>
<tr>
<td>Temperature Coefficients:</td>
<td>0.009</td>
<td></td>
<td></td>
<td>LSB/C</td>
<td>(1)</td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fullscale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Non-Linearity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off Isolation</td>
<td>–60</td>
<td></td>
<td></td>
<td>dB</td>
<td>(1,2,3)</td>
</tr>
<tr>
<td>Feedthrough</td>
<td>–60</td>
<td></td>
<td></td>
<td>dB</td>
<td>(1,2)</td>
</tr>
<tr>
<td>V_{CC} Power Supply Rejection</td>
<td>–60</td>
<td></td>
<td></td>
<td>dB</td>
<td>(1,2)</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>750</td>
<td>1.2 K</td>
<td></td>
<td>Ω</td>
<td>(4)</td>
</tr>
<tr>
<td>DC Input Leakage</td>
<td>–2</td>
<td>0</td>
<td>2</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
*These values are expected for most parts at 25°C but are not tested or guaranteed.
**An “LSB”, as used here, has a value of approximately 5 mV. (See Automotive Handbook for A/D glossary of terms).
1. These values are not tested in production and are based on theoretical estimates and/or laboratory test.
2. DC to 100 KHz
4. Resistance from device pin, through internal MUX, to sample capacitor.
3.5 AC CHARACTERISTICS - Serial Port - Shift Register Mode

Operating Conditions:
- $T_A = -40^{°}C$ to $+125^{°}C$
- $V_{SS} = 0.0$ V
- $V_{CC} = 5.0$ V $\pm 5\%$
- Load Capacitance = 100 pF

Table 11. Serial Port Timing - Shift Register Mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{XLXL}</td>
<td>Serial Port Clock Period</td>
<td>$8T_{OSC}$</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{XLXH}</td>
<td>Serial Port Clock Falling Edge to Rising Edge</td>
<td>$4T_{OSC} - 50$</td>
<td>$4T_{OSC} + 50$</td>
<td>ns</td>
</tr>
<tr>
<td>T_{QVXH}</td>
<td>Output Data Setup to Clock Rising Edge</td>
<td>$3T_{OSC}$</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{XHQX}</td>
<td>Output Data Hold after Clock Rising Edge</td>
<td>$2T_{OSC} - 50$</td>
<td>$2T_{OSC} + 50$</td>
<td>ns</td>
</tr>
<tr>
<td>T_{XHQV}</td>
<td>Next Output Data Valid after Clock Rising Edge</td>
<td>$2T_{OSC} + 200$</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{XHDX}</td>
<td>Input Data Hold after Clock Rising Edge</td>
<td>0</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>T_{XHQZ}</td>
<td>Last Clock Rising to Output Float</td>
<td>$5T_{OSC}$</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Parameters not tested.

Figure 11. Waveform - Serial Port - Shift Register Mode 0
3.5.1 52-Lead Device Design Considerations

The 87C196JV - Automotive A-step is a memory scalar of the 52-lead 87C196JT A-step designed for strict functional and electrical compatibility. Both the 87C196JV - Automotive and 87C196JT are 52-lead members of the Kx product family. Some functions that are on 68-lead devices are not supported on 52-lead devices because of the reduced pin-count. Following are the functionality differences between 52-lead Kx family members and 68-lead Kx family members.

68-Lead Functions Unsupported on the 52-Lead 87C196JV - Automotive:

- Analog Channels 0 and 1
- INST Pin Functionality
- SLPINT and SLPCS Pin Support
- HLD/HLDA Functionality
- External Clocking/Direction of Timer1
- WRH or BHE Functions
- Dynamic Buswidth
- Dynamic Wait State Control

The following is a list of recommended practices when using 52-lead Kx devices:

1. **External Memory.** Use an 8-bit bus mode only. There is neither a WRH# or BUSWIDTH pin. The bus cannot dynamically switch from 8- to 16-bit or vice versa. Set the CCB bytes to an 8-bit only mode, using WR# function only.

2. **Wait State Control.** Use the CCB bytes to configure the maximum number of wait states. If the READY pin is selected to be a system function, the device locks up waiting for READY. If the READY pin is configured as LSIO (default after RESET#), the internal logic receives a logic “0” level and insert the CCB defined number of wait states in the bus cycle. DON'T USE IRC = “111”.

3. **NMI Support.** The NMI is not bonded out. Make the NMI vector at location 203Eh vector to a Return instruction. This is for glitch safety protection only.

4. **Auto-Programming Mode.** The 52-lead device ONLY supports the 16-bit zero wait state bus during auto-programming.

5. **EPA4 through EPA7.** Since the JT/JR/JQ devices use the KR silicon, these functions are in the device, just not bonded out. A programmer can use these as compare only channels or for other functions like software timer, start and A/D conversion, or reset timers.

6. **Slave Port Support.** The Slave port can not be used on 52-lead devices due to P5.4/SLPINT and P5.1/SLPCS not being bonded-out.

7. **Port Functions.** Some port pins have been removed. P5.7, P5.6, P5.5, P5.1, P6.2, P6.3, P1.4 through P1.7, P2.3, P2.5, P0.0 and P0.1. The PxREG, PxSSEL, and PxIO registers can still be updated and read. The programmer should not use the corresponding bits associated with the removed port pins to conditionally branch in software. Treat these bits as RESERVED.

Additionally, these port pins should be setup internally by software as follows:

- Written to PxREG as “1” or “0”
- Configured as Push/Pull, PxIO as “0”
- Configured as LSIO

This configuration effectively straps the pin either high or low. **DO NOT Configure as Open Drain output “1”, or as an Input pin. This device is CMOS.**

8. **EPA Timer RESET/Write Conflict.** If the user writes to the EPA timer at the same time that the timer is reset, it is indeterminate which takes precedence. Users should not write to a timer if using EPA signals to reset it.
9. **Valid Time Matches.** The timer must increment/decrement to the compare value for a match to occur. A match does not occur if the timer is loaded with a value equal to an EPA compare value. Matches also do not occur if a timer is reset and 0 is the EPA compare value.

10. **P6_PIN.4–.7 Not Updated Immediately.** Values written to P6_REG are temporarily held in a buffer. If P6_MODE is cleared, the buffer is loaded into P6_REG.x. If P6_MODE is set, the value stays in the buffer and is loaded into P6_REG.x when P6_MODE.x is cleared. Since reading P6_REG returns the current value in P6_REG and not the buffer, changes to P6_REG cannot be read until/unless P6_MODE.x is cleared.

11. **Write Cycle During Reset.** If RESET occurs during a write cycle, the contents of the external memory device may be corrupted.

12. **Indirect Shift Instruction.** The upper 3 bits of the byte register holding the shift count are not masked completely. If the shift count register has the value 32 x n, where n = 1, 3, 5, or 7, the operand shifts 32 times. This should have resulted in no shift taking place.

13. **P2.7 (CLKOUT).** P2.7 (CLKOUT) does not operate in open drain mode. On the 87C196JV - Automotive CLKOUT is active during RESET.

3.5.2 87C196JV - Automotive Errata

Executing Routines in the User’s ROM While the Device is Operating in Serial Programming Mode

Problem: All code fetches above the first 8K bytes of user ROM while the device is operating in serial port programming mode will be directed to external memory. Therefore, if the user wants to call any routines in the user ROM, the entire routine must be within the first 8K bytes of memory (0A000 – 0BFFFH in serial port programming mode). For example, if the RISM ‘GO’ command is used with a target address of 0C000H, the device will attempt to fetch code from external memory rather than the on-board ROM.

Implication: This errata only affects code fetches from the user ROM. Data fetches to the entire ROM work correctly. It is not possible to execute code from above the first 8K byte of user ROM while the device is operating in Serial Port Programming mode.

Workaround: None.

Status: NoFix. Refer to Summary Table of Changes to determine affected stepping(s).

3.5.3 87C196JR/JQ D-step to 87C196JV - Automotive A-step Design Considerations

1. **Memory Scalar**

 The 87C196JV - Automotive A-step is a memory scalar of the 87C196JR D-step.

<table>
<thead>
<tr>
<th>Register RAM</th>
<th>87C196JR D-Step</th>
<th>87C196JV - Automotive A-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>18h to 1FFh</td>
<td>18h to 3FFh and 1C00h to 1DFFh</td>
<td></td>
</tr>
<tr>
<td>Internal (Code) RAM</td>
<td>400h to 4FFh</td>
<td>400h to 5FFh</td>
</tr>
<tr>
<td>Internal ROM/EPROM</td>
<td>2000h to 5FFh</td>
<td>2000h to DFFh</td>
</tr>
</tbody>
</table>

2. **1B00–1BDFh External Addressing**

 The 87C196JR/JQ D-step cannot access external memory locations 1B00h-1BDFh. This JR/JQ D-step errata has been corrected on the 87C196JV - Automotive A-step. A bus cycle does not occur when these addresses are accessed. If attempting to read from 1B00h-1BDFh a value of FFh is returned even though a read cycle is not generated. Writing to these locations will not generate an external bus cycle either.
3.5.4 87C196JR/JQ C-step to JV A-step Design Considerations

This section documents differences between the 87C196JR C-step (JR-C) and the 87C196JV - Automotive A-step (JV-A). For a list of design considerations between 68-lead and 52-lead devices, please refer to the 52-lead Device Design Considerations section of this data sheet. Since the 87C196JQ is simply a memory scalar of the 87C196JR, the term “JR” in this section refers to both the JR and JQ versions of the device unless otherwise noted.

The JR-C is simply a 87C196KR C-step (KR-C) device packaged within a 52-lead package. This reduction in pin count necessitated not bonding-out certain pins of the KR-C device. The fact that these “removed pins” were still present on the device but not available to the outside world allowed the programmer to take advantage of some of the 68-lead KR features.

The JV-A is a fully-optimized 52-lead device based on the 87C196JT A-step device which is based on the JR-D step device. The JT-A design data base was used to assure that the JV-A would be fully compatible with the KR-C, JR-C, JR-D and other Kx family members. The main difference between the JV-A and the JT-A as compared to the JR-C is that several of the unused (not bonded-out) functions on the JR-C were removed altogether on the JT-A.

Following is a list of differences between the JR-C and the JV-A, JT-A:

1. **Port 3 Push-Pull Operation**

 It was discovered on JR-C that if Port 3 is selected for push-pull operation (P34_DRV register) during low speed I/O (LSIO), the port was driving data when the system bus was attempting to input data. It is rather unlikely that this errata would affect an application because the application would have to use Port 3 for both LSIO and as an external addr/data bus. None the less, this errata was corrected on the JT-A and JV-A.

2. **\(V_{OH2} \) Strengthened**

 The DC Characteristics section of the Automotive KR Data Sheet contains a parameter, \(V_{OH2} \) (Output High Voltage in RESET (BD ports)) which is specified at \(V_{CC} - 1 \) V min at \(I_{OH2} = -15 \) mA. This specification indicates the strength of the internal weak pull-ups that are active during and after reset. These weak pull-ups stay active until the user writes to PxMODE (previously known as PxSSEL) and configures the port pin as desired.

 These pull-ups do not meet this \(V_{OH2} \) spec on the JR-C. The weak pull-ups on specified JT-A and JV-A ports have been enhanced to meet the published specification of \(I_{OH2} = -15 \) µA.

3. **ONCE Mode**

 ONCE mode is entered by holding a single pin low on the rising edge of RESET#. On the KR, this pin is P5.4/SLPINT. The JR-C does not support ONCE mode since P5.4/SLPINT (ONCE mode entry pin) is not bonded-out on these devices. To provide ONCE mode on the JT-A and JV-A, the ONCE mode entry function was moved from P5.4/SLPINT to P2.6/HLDA. This allows the JT-A and JV-A to enter ONCE mode using P2.6 instead of removed pin P5.4.

4. **PORT0**

 On the JR-C, P0.0 and P0.1 are not bonded out. However, these inputs are present in the device and reading them provides an indeterminate result.

 On the JT A-step and JV-A the analog inputs for these two channels at the multiplexer are tied to \(V_{REF} \). Therefore, initiating an analog conversion on ACH0 or ACH1 results in a value equal to full scale (3FFh). On the JT A-step and JV-A the digital inputs for these two channels are tied to ground, therefore reading P0.0 or P0.1 results in a digital "0".
5. PORT1

On the JR-C, P1.4, P1.5, P1.6 and P1.7 are not bonded out but are present internally on the device. This allows the programmer to write to the port registers and clear, set or read the pin even though it is not available to the outside world. However, to maintain compatibility with JT A-step, JV A-step and future devices, it is recommended that the corresponding bits associated with the removed pins NOT be used to conditionally branch in software. These bits should be treated as reserved.

On the JT A-step and JV A-step unused port logic for these four port pins has been removed from the device and is not available to the programmer. Corresponding bits in the port registers have been “hard-wired” to provide the following results when read:

<table>
<thead>
<tr>
<th>Register Bits</th>
<th>When Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_PIN.x</td>
<td>(x = 4,5,6,7)</td>
</tr>
<tr>
<td>P1_REG.x</td>
<td>(x = 4,5,6,7)</td>
</tr>
<tr>
<td>P1_DIR.x</td>
<td>(x = 4,5,6,7)</td>
</tr>
<tr>
<td>P1_MODE.x</td>
<td>(x = 4,5,6,7)</td>
</tr>
</tbody>
</table>

NOTE: Writing to these bits has no effect.

6. PORT2

On the JR-C, P2.3 and P2.5 are not bonded out but are present internally on the device. This allows the programmer to write to the port registers and clear, set or read the pin even though it is not available to the outside world. However, to maintain compatibility with JT A-step, and JV A-step and future devices, it is recommended that the corresponding bits associated with the removed pins not be used to conditionally branch in software. These bits should be treated as reserved.

On the JT-A and JV-A, unused port logic for these two port pins has been removed from the device and is not available to the programmer. Corresponding bits in the port registers have been “hardwired” to provide the following results when read:

<table>
<thead>
<tr>
<th>Register Bits</th>
<th>When Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2_PIN.x</td>
<td>(x = 3,5)</td>
</tr>
<tr>
<td>P2_REG.x</td>
<td>(x = 3,5)</td>
</tr>
<tr>
<td>P2_DIR.x</td>
<td>(x = 3,5)</td>
</tr>
<tr>
<td>P2_MODE.x</td>
<td>(x = 3,5)</td>
</tr>
</tbody>
</table>

NOTE: Writing to these bits has no effect.

7. PORT5

On the JR-C, P5.1, P5.4, P5.5, P5.6 and P5.7 are not bonded out but are present internally on the device. This allows the programmer to write to the port registers and clear, set or read the pin even though it is not available to the outside world.

On the JT A-step and JV A-step unused port logic for these five port pins has been removed. The data read from the P5_PIN, P5_REG, P5_MODE, and P5_DIR register bits associated with these removed pins can be unpredictable on these devices due to the removed logic. Therefore, these bits should not be used to conditionally branch in software. These bits should be treated as reserved.
8. PORT6

On the JR-C, P6.2 and P6.3 are not bonded out but are present internally on the device. This allows the programmer to write to the port registers and clear, set or read the pin even though it is not available to the outside world. However, to maintain compatibility with JT A-step, and JV A-step and future devices, it is recommended that the corresponding bits associated with the removed pins not be used to conditionally branch in software. These bits should be treated as reserved.

On the JT A-step and JV A-step, unused port logic for these two port pins has been removed from the device and is not available to the programmer. Corresponding bits in the port registers have been “hardwired” to provide the following results when read:

<table>
<thead>
<tr>
<th>Register Bits</th>
<th>When Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6_PIN.x</td>
<td>(x = 2,3)</td>
</tr>
<tr>
<td>P6_REG.x</td>
<td>(x = 2,3)</td>
</tr>
<tr>
<td>P6_DIR.x</td>
<td>(x = 2,3)</td>
</tr>
<tr>
<td>P6_MODE.x</td>
<td>(x = 2,3)</td>
</tr>
</tbody>
</table>

NOTE: Writing to these bits has no effect.

9. 8XC196JQ Internal to External Memory Rollover Point

8XC196JQ devices are simply 8XC196JR devices with less memory. Both the JQ-C and JQ-D are fabricated from the JR-C and JR-D respectfully. The difference between JQ and JR devices is that memory locations beyond the supported boundaries on the JQ are not tested in production and should not be used. Any software which relies upon reading or writing these locations may not function correctly. Following are the supported memory maps for these devices:

<table>
<thead>
<tr>
<th></th>
<th>JQ C- and D-Step</th>
<th>JR C- and D-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register RAM</td>
<td>18h to 17Fh</td>
<td>18h to 1FFh</td>
</tr>
<tr>
<td>Internal (Code) RAM</td>
<td>400h to 47Fh</td>
<td>400h to 4FFh</td>
</tr>
<tr>
<td>Internal ROM/EPROM</td>
<td>2000h to 4FFHh</td>
<td>2000h to 5FFHh</td>
</tr>
</tbody>
</table>

It is important to note that the internal to external memory roll-over point for both the JR and JQ devices is the same (6000h and above goes external). Two guidelines the programmer should follow to insure no problems are encountered when using JQ devices are:

a. For JQ devices, the program must contain a jump to a location greater than 5FFFh before the 12K boundary (4FFFh) is reached. This is necessary only if greater than 12K of program memory is required with a JQ device and portions of the program execute from internal ROM/EPROM.

b. For JQ devices with EA# tied to ground, use only internal program memory from 2000h to 4FFHh. Do not use the unsupported locations from 5000h to 5FFFh.

10. EPA Channels 4 through 7

The JR C-step device is simply a 68-lead KR-C device packaged in a 52-lead package. The reduced pin-out is achieved by not bonding-out the unsupported pins. EPA4–EPA7 are among these pins that are not bonded-out. The fact that EPA4–EPA7 are still present allows the programmer to use these channels as software timers, to start A/D conversions, reset timers, etc. All of the port pin logic is still present and it is possible to use the EPA to toggle these pins internally. Please refer to the 52-Lead Device section in this Data Sheet for further information.
On the JT A-step and JV A-step the EPA4–EPA7 logic has NOT been removed from the device. This allows the programmer to still use these channels (as on the JR C-step) for software timers, etc. The only difference is that the associated port pin logic has been removed and does not exist internally. To maintain JR C-step to JT A-step and JV A-step compatibility, programmers should make sure that their software does not rely upon the removed port pin logic.

11. EPA Overruns

EPA “lock-up” can occur if overruns are not handled correctly, refer to Intel Techbit #DB0459 “Understanding EPA Capture Overruns”, date 12-9-93. Applies to EPA channels with interrupts and overruns enabled (ON/RT bit set to 1).

12. Indirect Addressing with Auto-Increment

For the special case of a pointer pointing to itself using auto-increment, an incorrect access of the incremented pointer address will occur instead of an access to the original pointer address. All other indirect auto-increment accesses will not be affected. Please refer to Techbit #MCO593.

a. Incorrect sequence:
 Results in ax being incremented by 1 and the contents of the address pointed to by ax+1 to be loaded into bx.

 ld ax,#ax
 ldb bx,[ax]+

b. Suggested sequence:
 Results in the contents of the address pointed to by ax to be loaded into bx and ax incremented by 1.

 ld ax,#bx; where ax does not equal bx
 ldb cx,[ax]+

3.5.5 87C196JT to 87C196JV Design Considerations

1. The additional register RAM on the 87C196JV is mapped to 1C00h to 1DFFh. On the 87C196JT this memory range is mapped as external memory.

2. The 87C196JV has 48K of EPROM located from 2080h to DFFFh. The JT has 32K of EPROM located from 2080h to 9FFFh. Memory accesses between 1E00h and FFFFh go external for the 87C196JV. Access between A000h to FFFFh go external for the 87C196JT.
Memory Map for JV

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFFh</td>
<td>EPROM (Internal) 48 KByte.</td>
</tr>
<tr>
<td>2080h</td>
<td>User EPROM starts here. JV/JT and all Kx products same.</td>
</tr>
<tr>
<td>207Fh</td>
<td>Chip configuration bytes, PTS Vectors, Interrupt Vectors, Security Key.</td>
</tr>
<tr>
<td>2000h</td>
<td>JV/JT and all Kx products same. (See Kx User’s manual Table 3.2).</td>
</tr>
<tr>
<td>1FFFh</td>
<td>Internal Special Function Registers (SFR’s) (16-bit addressable) JV identical to JT and rest of Kx family. JV/JT ‘reserved’ locations (see Figure 3.2 Kx User’s Manual).</td>
</tr>
<tr>
<td>1F00h</td>
<td></td>
</tr>
<tr>
<td>1EFFh</td>
<td>Mapped as external memory on JV, JT, and rest of Kx family.</td>
</tr>
<tr>
<td>1E00h</td>
<td></td>
</tr>
<tr>
<td>1DFFh</td>
<td>Additional Register RAM on JV.</td>
</tr>
<tr>
<td>1C00h</td>
<td></td>
</tr>
<tr>
<td>1BFFh</td>
<td>External Memory Space on JV/JT and rest of Kx family.</td>
</tr>
<tr>
<td>0600h</td>
<td></td>
</tr>
<tr>
<td>05FFh</td>
<td>Code RAM. Same on JV, JT, KT.</td>
</tr>
<tr>
<td>0400h</td>
<td></td>
</tr>
<tr>
<td>03FFh</td>
<td>Register RAM. Same on JV, JT, KT.</td>
</tr>
<tr>
<td>0018h</td>
<td></td>
</tr>
<tr>
<td>0017h</td>
<td>Core Special Function Registers. Same on JV, JT, and rest of Kx/Jx family.</td>
</tr>
<tr>
<td>0000h</td>
<td></td>
</tr>
</tbody>
</table>
4.0 DATASHEET REVISION HISTORY

This is the (-004) version of the 8XC196JV 20 MHz datasheet.

<table>
<thead>
<tr>
<th>Item</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>Converted to new template.</td>
</tr>
<tr>
<td>Editing</td>
<td>Corrected spelling and grammar errors.</td>
</tr>
<tr>
<td>Product Features</td>
<td>Combined product features on cover page with old CPU and Peripheral Features sections.</td>
</tr>
<tr>
<td>Section 1.0, “INTRODUCTION” on page 1</td>
<td>Combined old cover page text and old Architecture section into new Introduction section.</td>
</tr>
<tr>
<td>Section 1.0, “INTRODUCTION” on page 1</td>
<td>First paragraph - Changed “(JT.-D)” to “(JT-A)”. Second paragraph - Changed: • “≤5µs at 20 MHz” to “15µs at 20MHz” • “200 ns” to “250 ns”.</td>
</tr>
<tr>
<td>Section 3.0, “ELECTRICAL CHARACTERISTICS” on page 4</td>
<td>Operating Conditions: Changed V<sub>CC</sub> and V<sub>REF</sub> from “4.5 V to 5.5 V” to “4.75 V to 5.25 V”.</td>
</tr>
<tr>
<td>Table 2 “DC Characteristics (Under Listed Operating Conditions)” on page 4</td>
<td>I<sub>CC</sub>, I<sub>CC1</sub>, I<sub>REF</sub> - Test Conditions - Changed “5.5 V” to “5.25 V”. I<sub>IDLE</sub> - Test Conditions - Changed “5.5 V” to “5.25 V”. I<sub>PD</sub>: • Max - Deleted TBD Test Conditions - Changed “5.5V” to “5.25V”; “Note 6” to “Note 5”. V<sub>IH</sub> - Test Conditions - Changed “Note 7” to “Note 6” V<sub>OL</sub> and V<sub>OH</sub> - Test Conditions - Deleted “Note 5”. V<sub>OL3</sub> - Test Conditions - Changed “Note 8” to “Note 7”. RWPU: • Min - Deleted “9” Test Conditions - Changed “Note 6” to “Note 5”. “Note 5” Deleted</td>
</tr>
<tr>
<td>Figure 6 “Input/Output Test Conditions” on page 8</td>
<td>Added “Output” to title.</td>
</tr>
<tr>
<td>Figure 7 “Float Test Conditions” on page 9</td>
<td>Changed “Output” to “Float” in title.</td>
</tr>
<tr>
<td>Section 3.3.1, “AC EPROM Programming Characteristics” on page 10</td>
<td>Operating Conditions - Changed “V<sub>REF</sub> ... o.5 V” to “V<sub>REF</sub> ... 0.25 V”.</td>
</tr>
<tr>
<td>Table 7 “AC EPROM Programming Characteristics” on page 10</td>
<td>Note 1: Changed “V<sub>REF</sub> ... o.5 V” to “V<sub>REF</sub> ... 0.25 V”.</td>
</tr>
<tr>
<td>Table 9 “A/D Operating Conditions” on page 12</td>
<td>Removed “(1)” from table heading. V<sub>CC</sub> and V<sub>CC</sub>: • Min - Changed “4.5” to “4.75” • Max - Changed “5.5” to “5.25”</td>
</tr>
<tr>
<td>Section 3.2, “AC CHARACTERISTICS” on page 6</td>
<td>Operating Conditions: Changed “V<sub>CC</sub> ... 10%” to “V<sub>CC</sub> ... 5%”.</td>
</tr>
<tr>
<td>Section 3.5.2, “87C196JV - Automotive Errata” on page 16</td>
<td>Added Errata from Specification Update.</td>
</tr>
<tr>
<td>Section 3.5.4, “87C196JR/JQ C-step to JV A-step Design Considerations” on page 17</td>
<td>#7 - PORT5 - Revised with Specification Update section.</td>
</tr>
<tr>
<td>Section 4.0, “DATASHEET REVISION HISTORY” on page 22</td>
<td>Updated with revision changes.</td>
</tr>
</tbody>
</table>